[1]Aczel, P. and Rathjen, M. Notes on constructive set theory. Technical report, Institut Mittag–Leffler Preprint (2001).
[3]Bourbaki, N.Sur le théorème de Zorn. Arch. Math. 2 (6) (November 1949), 434–437.
[4]Dacar, F.Suprema of families of closure operators. Seminar for foundations of mathematics and theoretical computer science (November 2008). Faculty of Mathematics and Physics, University of Ljubljana, Slovenia.
[5]Dacar, F. The join-induction principle for closure operators on dcpos. Available from http://dis.ijs.si/France/ (January 2009). [6]Lambek, J. and Scott, P. J.Introduction to higher order categorical logic. Cambridge Studies in Advanced Math., vol. 7 (Cambridge University Press, 1986).
[7]Lang, S.Algebra. Graduate Texts in Mathematics, vol. 211 (Springer-Verlag, New York, third edition, 2002).
[8]Mac Lane, S. and Moerdijk, I.Sheaves in Geometry and Logic: A First Introduction to Topos Theory (Springer-Verlag, 1992).
[9]Pataraia, D. A constructive proof of Tarski's fixed-point theorem for dcpos. 65th Peripatetic Seminar on Sheaves and Logic (November 1997).
[10]Rogers, H.Theory of Recursive Functions and Effective Computability (MIT Press, third edition, 1992).
[12]Tarski, A.A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5 (2) (1955), 285–309.
[13]Taylor, P.Intuitionistic sets and ordinals. J. Symbolic Logic 61 (3) (1996), 705–744.
[14]van Oosten, J.Realizability: An Introduction to its Categorical Side. Studies in Logic and the Foundations of Mathematics. vol. 152 (Elsevier, 2008).
[15]Witt, E.Beweisstudien zum Satz von M. Zorn. Math. Nachr. 4 (1951), 434–438.