[1]
Akemann, C. A.
The general Stone–Weierstrass problem. J. Funct. Anal.
4 (1969), 277–294.

[2]
Akemann, C. A.
Left ideal structure of *C**-algebras. J. Funct. Anal.
6 (1970), 305-317.

[3]
Ara, P. and Mathieu, M.
On the central Haagerup tensor product. Proc. Edin. Math. Soc.
37 (1994), 161-174.

[4]
Archbold, R. J. and Somerset, D. W. B.
Quasi-standard C*-algebras. Math. Proc. Camb. Phil. Soc.
107 (1990), 349-360.

[5]
Blackadar, B.
Operator algebras: theory of *C**-algebras and von Neumann algebras. Encyc. Math. Sci.
122 (Springer-Verlag, Berlin 2006).

[6]
Blackadar, B. and Handelman, D.
Dimension functions and traces on *C**-algebras. J. Funct. Anal.
45 (1982), 297–C340.

[7]
Bonsall, F. F. and Duncan, J.
Complete Normed Algebras, (Springer-Verlag, Berlin
1973).

[8]
Brown, L. G. and Pedersen, G. K.
*C**-algebras of real rank zero. J. Funct. Anal.
99 (1991), 131-149.

[9]
Cuntz, J.
*K*-theory for certain *C**-algebras. Ann. of Math.
113 (1981), 181-197.

[10]
Cuntz, J. and Pedersen, G. K.
Equivalence and traces on *C**-algebras. J. Funct. Anal.
33 (1979), 135-164.

[11]
Dixmier, J.
*C**-Algebras (North-Holland Publishing, 1977).

[12]
Dupré, M. J. and Gillette, R. M.. Banach bundles, Banach modules and automorphisms of *C**-algebras, Research Notes in Mathematics 92 (Pitman, 1983).

[13]
Haagerup, U.
Quasitraces on exact *C**-algebras are traces. C. R. Math. Acad. Sci. Soc. R. Can.
36 (2014), 67–C92.

[14]
Kadison, R. V. and Ringrose, J. R.
Fundamentals of the theory of operator algebras Vol. II: Advanced theory, Pure and Applied Mathematics **100** (Academic Press, 1986).

[15]
Kirchberg, E. and Rørdam, M.. Non-simple purely infinite *C**-algebras. Amer. J. Math.
122 (2000), 637–666.

[16]
Lance, E. C.
Hilbert *C**-modules - A toolkit for operator algebraists. Lond. Math. Soc. Lect. Note Ser. **210** (Camb. University Press, 1995).

[17]
Leung, C. W. and Ng, C. K.
Invariant ideals of twisted crossed products. Math. Zeit.
243 (2003), 409-421.

[18]
Lin, H.
Equivalent open projections and corresponding hereditary *C**-subalgebras. J. Lond. Math. Soc.
41 (1990), 295-301.

[19]
Murphy, G. J.
*C**-algebras and operator theory (Academic Press, 1990).

[20]
Murray, F. J.
The rings of operators papers, in The legacy of John von Neumann (Hempstead, NY, 1988), 57-60. Proc. Sympos. Pure Math. **50**. (Amer. Math. Soc.
Providence, R.I., 1990).

[21]
Murray, F. J. and Von Neumann, J.
On rings of operators
Ann. of Math. (2), 37 (1936), 116-229.

[22]
Ng, C. K.
Morita equivalences between fixed point algebras and crossed products. Math. Proc. Camb. Phil. Soc.
125 (1999), 43-52.

[23]
Ng, C. K. Strictly amenable representations of reduced group *C**-algebras. *Int. Math. Res. Notices*. to appear.

[24]
Ng, C. K. On extension of lower semi-continuous semi-finite traces, in preparation.

[25]
Ng, C. K. and Wong, N. C.
A Murray-von Neumann type classification of *C**-algebras, in Operator Semigroups Meet Complex Analysis, Harmonic Analysis and Mathematical Physics, Herrnhut, Germany (in honor of Prof. Charles Batty for his 60th birthday), Operator Theory: Advance and Applications, **250** (Springer Internat. Publ.
2015), 369-395.

[26]
Pedersen, G. K.
*C**-algebras and their automorphism groups (Academic Press, 1979).

[27]
Peligrad, C. and Zsidó, L. Open projections of *C**-algebras: Comparison and Regularity, in *Operator Theoretical Methods*, 17*th Int. Conf. on Operator Theory, Timisoara (Romania), June* 23-26, (1998). Theta Found. Bucharest (2000), 285-300

[28]
Rørdam, M.
A simple *C**-algebra with a finite and an infinite projection. Acta Math.
191 (2003), 109-142.

[29]
Somerset, D. W. B.
The local multiplier algebra of a C*-algebra.
Quart. J. Math. Oxford, Ser. 2, 47 (1996), 123-132.

[30]
Zhang, S.
Stable isomorphism of hereditary *C**-subalgebras and stable equivalence of open projections. Proc. Amer. Math. Soc.
105 (1989), 677-682.