[1]Abe, E.. Hopf Algebras (Cambridge University Press, 1977).
[2]Akutsu, V. and Wadati, M.. Exactly solvable models and new link polynomials, I. J. Phys. Soc. Japan 56 (1987), 3039–3051.
[3]Akutsu, V., Deguchi, T. and Wadati, M.. Exactly solvable models and new link polynomials, II–IV. J. Phys. Soc. Japan 56 (1987), 3464–3479
[3]Akutsu, V., Deguchi, T. and Wadati, M.. Exactly solvable models and new link polynomials, II–IV. J. Phys. Soc. Japan 57 (1988), 757–776
[3]Akutsu, V., Deguchi, T. and Wadati, M.. Exactly solvable models and new link polynomials, II–IV. J. Phys. Soc. Japan 57 (1988), 1173–1185.
[4]Atiyah, M., Hitchin, N., Lawrence, R. and Segal, G.. Notes on the Oxford seminar on Jones–Witten theory (Michaelmas Term 1988).
[5]Baxter, R. I.. The partition function of the eight-vertex lattice model. Ann. Physics 70 (1972), 193–228.
[6]Brustein, R., Ne'eman, V. and Sternberg, S.. Duality, crossing and Mac Lane's coherence. (Preprint.)
[7]Carboni, A.. Matrices, relations and group representations. (Preprint, 1988.)
[8]Deligne, P.. (Private communication.)
[8a]Deligne, P. and Milne, J.. Tannakian categories. In Hodge Cycles, Motives and Shimura Varieties, Lectures Notes in Math. vol. 900 (Springer-Verlag, 1982).
[9]Drinfel'd, V. G.. Quantum groups. J. Soy. Math. 41 (2) (1988), 898–915.
[10]Freyd, P. J. and Yetter, D. N.. Braided compact closed categories with applications to low-dimensional topology. Adv. in Math. 77 (1989), 156–182.
[11]Freyd, P. J. and Yetter, D. N.. Coherence theorems via knot theory. J. Pure Appl. Algebra (To appear.)
[11]Joyal, A.. Lecture at McGill University (Autumn, 1987).
[12]Joyal, A. and Street, R.. Braided tensor categories. (Preprint.)
[13]Joyal, A. and Street, R.. Planar diagrams and tensor algebra. (Preprint.)
[14]Kauffman, L.. An invariant of regular isotopy. Trans. Amer. Math. Soc. (To appear.)
[15]Kauffman, L.. Statistical Mechanics and the Jones Polynomial. In Braids (eds. Birman, J. S. and Libgober, A.), Contemp. Math. vol. 78 (American Mathematical Society, 1988).
[16]Kelly, G. M. and Laplaza, M. L.. Coherence for compact closed categories. J. Pure Appl. Algebra 19 (1980), 193–213.
[17]Kirby, R.. A calculus for framed links in S 3. Invent. Math. 45 (1978), 35–36.
[18]Kulish, P. P. and Sklyanin, E. K.. Solutions of the Yang–Baxter equation. Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov 95 (1980), 129–160. (in Russian).
[19]Lyubashenko, V. V.. Hopf algebras and vector symmetries. Russ. Math. Surveys 41 (1986), 153–154.
[20]Mac Lane, S.. Categories for the Working Mathematician (Springer-Verlag, 1971).
[21]Mac Lane, S.. Natural associativity and commutativity. Rice Univ. Stud. 49 (1963), 28–46.
[21a]Majid, S.. Doubles of quasitriangular Hopf algebras. (Preprint.)
[22]Manin, Yu. I.. Quantum groups and non-commutative geometry (Université de Montreal, 1988).
[23]Moore, G. and Seiberg, N.. Classical and quantum conformal field theory. (Preprint.)
[24]Penrose, R.. Applications of negative dimensional tensors. In Combinatorial Mathematics and its Applications (ed. Welsh, D. J. A.), (Academic Press, 1971), pp. 221–244.
[25]Reidemeister, K.. Knot Theory (B.S.C. Associates, 1983)
Reidemeister, K.. Knot Theory (translation of Knotentheorie (Springer-Verlag, 1932)).
[26]Segal, G.. The definition of conformal theory. (Preprint.)
[27]Shum, M.-C.. Tortile Tensor Categories. Ph.D. thesis, Macquarie University (1989).
[28]Street, R. S. (Private communication.)
[29]Sweedler, M. E.. Hopf Algebras (Benjamin, 1969).
[30]Thakhtakzhan, L. A. and Faddeev, L. B.. The quantum method of the inverse problem and the Heisenberg XYZ model. Russian Math. Surveys 34 (1979), 11–68.
[31]Witten, E.. Quantum field theory and the Jones polynomial. (Preprint.)
[32]Yang, C. N.. Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19 (1967), 1312–1315.