Skip to main content Accessibility help
×
Home

Regulator of modular units and Mahler measures

  • WADIM ZUDILIN (a1)

Abstract

We present a proof of the formula, due to Mellit and Brunault, which evaluates an integral of the regulator of two modular units to the value of the L-series of a modular form of weight 2 at s=2. Applications of the formula to computing Mahler measures are discussed.

Copyright

References

Hide All
[1]Baker, M. H., González–Jiménez, E., González, J. and Poonen, B.Finiteness results for modular curves of genus at least 2. Amer. J. Math. 127 (2005), 13251387.
[2]Bertin, M. J.Mesure de Mahler dune famille de polynômes. J. Reine Angew. Math. 569 (2004), 175188.
[3]Boyd, D.Mahler's measure and special values of L-functions. Experiment. Math. 7 (1998), 3782.
[4]Boyd, D. Mahler's measure and L-functions of elliptic curves evaluated at s=3, slides from a lecture at the SFU/UBC number theory seminar (7 December 2006), http://www.math.ubc.ca~boyd/sfu06.ed.pdf.
[5]Brunault, F.Beilinson–Kato elements in K 2 of modular curves. Acta Arith. 134 (2008), 283298.
[6]Condon, J. D. Mahler measure evaluations in terms of polylogarithms. Dissertation. The University of Texas at Austin (2004).
[7]Deninger, C.Deligne periods of mixed motives, K-theory and the entropy of certain $\mathbb Z^n$-actions. J. Amer. Math. Soc. 10 (1997), 259281.
[8]Katz, N. M.p-adic interpolation of real analytic Eisenstein series. Ann. of Math., Ser. (2) 104 (1976), 459571.
[9]Lalín, M. N.On a conjecture by Boyd. Intern. J. Number Theory 6 (2010), 705711.
[10]Lalín, M. N. and Rogers, M. D.Functional equations for Mahler measures of genus-one curves. Algebra and Number Theory 1 (2007), 87117.
[11]Mellit, A.Mahler measures and q-series. In Explicit Methods in Number Theory (MFO, Oberwolfach, Germany, 17–23 July 2011), Oberwolfach Reports 8 (2011), no. 3, 19901991.
[12]Mellit, A. Regulator of two modular units formula, unpublished note (12 June 2012).
[13]Rodriguez Villegas, F.Modular Mahler measures. I. In Topics in Number Theory (University Park, PA, 1997), Math. Appl. 467 (Kluwer Academic Publisher, Dordrecht, 1999), 1748.
[14]Rogers, M. and Zudilin, W.From L-series of elliptic curves to Mahler measures. Compositio Math. 148 (2012), 385414.
[15]Rogers, M. and Zudilin, W.On the Mahler measure of 1+X+1/X+Y+1/Y. Internat. Math. Res. Not., to appear; doi: 10.1093/imrn/rns285.
[16]Schoeneberg, B.Elliptic modular functions: an introduction, translated from the German by Smart, J. R. and Schwandt, E. A. Die Grundlehren der mathematischen Wissenschaften 203 (Springer-Verlag, 1974).
[17]Yang, Y.Transformation formulas for generalized Dedekind eta functions. Bull. London Math. Soc. 36 (2004), 671682.
[18]Zudilin, W.Period(d)ness of L-values. In Number Theory and Related Fields, in memory of Alf van der Poorten, Borwein, J. M.et al. (eds.). Springer Proceedings in Math. Stat. 43 (Springer, New York, 2013), 381395.

Related content

Powered by UNSILO

Regulator of modular units and Mahler measures

  • WADIM ZUDILIN (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.