Skip to main content
×
×
Home

Third Mac Lane cohomology

  • HANS–JOACHIM BAUES (a1), MAMUKA JIBLADZE (a2) and TEIMURAZ PIRASHVILI (a3)
Abstract
Abstract

MacLane cohomology is an algebraic version of the topological Hochschild cohomology. Based on the computation of the third author (see Appendix) we obtain an interpretation of the third Mac Lane cohomology of rings using certain kind of crossed extensions of rings in the quadratic world. Actually we obtain two such interpretations corresponding to the two monoidal structures on the category of square groups.

Copyright
References
Hide All
[1]Baues H.-J.. The algebra of secondary cohomology operations. Progr. Math. 297 (2006), 483 pp.
[2]Baues H.-J.. The homotopy category of simply connected 4-manifolds. London Math. Soc. Lecture Note Series 297 (Cambridge University Press, 2003), xii+184 pp.
[3]Baues H.-J.. Combinatorial homotopy and 4-dimensional complexes. De Gruyter Expositions in Math 2 (de Gruyter, 1991), 380 pp.
[4]Baues H.-J. and Dreckmann W.. The cohomology of homotopy categories and the general linear group. K-theory 3 (1989), 307338.
[5]Baues H.-J.Hartl M. and Pirashvili T.. Quadratic categories and square rings. J. Pure Appl. Algebra 122 (1997), 140.
[6]Baues H.-J. and Iwase N.. Square rings associated to elements in homotopy groups of spheres. Contemp. Math. 274 (2001), 5778.
[7]Baues H.-J.Jibladze M. and Pirashvili T.. Quadratic algebra of square groups. Preprint MPIM2006-9.
[8]Baues H.-J. and Minian E. C.. Crossed extensions of algebras and Hochschild cohomology. Homology, Homotopy Appl. 4 (2002), 6382.
[9]Baues H.-J. and Pirashvili T.. Quadratic endofunctors of the category of groups. Adv. Math. 141 (1999), 167206.
[10]Baues H.-J. and Pirashvili T.. A universal coefficient theorem for quadratic functors. J. Pure Appl. Algebra 148 (2000), 115.
[11]Baues H.-J. and Pirashvili T.. Comparison of Mac Lane, Shukla and Hochschild cohomologies. J. Reine Angew. Math. 598 (2006), 2569.
[12]Baues H.-J. and Wirsching G.. Cohomology of small categories. J. Pure Appl. Algebra 38 (1985), 187211.
[13]Eilenberg S. and Lane S. Mac. On the groups H(π,n), II. Ann. Math. 60 (1954), 49139.
[14]Hochschild G.On the cohomology groups of an associative algebra. Ann. of Math. (2) 46 (1945), 5867.
[15]Janelidze G.Internal crossed modules. Georgian Math. J. 10 (2003), 99114.
[16]Jibladze M. and Pirashvili T.. Some linear extensions of a category of finitely generated free modules (russian). Soobshch. Akad. Nauk Gruzin. SSR 123 (1986), 481484.
[17]Jibladze M. and Pirashvili T.. Cohomology of algebraic theories. J. Algebra 137 (1991), 253296.
[18]Lazarev A.Homotopy theory of A∞ ring spectra and applications to MU-modules. K-theory 24 (2001), 243281.
[19]Loday J.-L.. Spaces with finite many nontrivial homotopy groups. J. Pure Appl. Algebra 24 (1982), 179202.
[20]Loday J.-L.. Cyclic Homology (Second edition. Grundlehren der Mathematischen Wissenschaften) 301 (Springer, 1998), xx+513 pp.
[21]Mac Lane S. Homologie des anneaux et des modules. Coll. Topologie Algebrique (Louvain, 1956), 5580.
[22]Mac Lane S.Extensions and obstructions for rings. Ill. J. Math. 2 (1958), 316345.
[23]Mac Lane S. and Whitehead J. H. C.. On the 3-type of a complex. Proc. Nat. Acad. Sci. USA 36 (1950), 4148.
[24]Pirashvili T.Higher additivizations (Russian). Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 4454.
[25]Pirashvili T.Models for the homotopy theory and cohomology of small categories (russian). Soobshch. Akad. Nauk Gruzin. SSR 129 (1988), 261264.
[26]Pirashvili T. Cohomology of small categories in homotopical algebra. In: K-theory and homological algebra (Tbilisi, 1987–88) Lecture Notes in Math. 1437 (Springer, 1990), 268–302.
[27]Pirashvili T.. Polynomial approximation of inline-graphic and inline-graphic groups in functor categories. Comm. Algebra 21 (1993), 17051719.
[28]Pirashvili T.. On the topological Hochschild homology of ℤ/p k. Comm. Algebra 23 (1995), no. 4, 15451549.
[29]Pirashvili T. On the cohomology of the category NIL. Appendix to [2].
[30]Pirashvili T. and Waldhausen F.. Mac Lane homology and topological Hochschild homology. J. Pure Appl. Algebra 82 (1992), 8198.
[31]Quillen D. G.Homotopical algebra. Lecture Notes in Math. 43 (Springer, 1967), iv+156 pp.
[32]Shukla U.Cohomologie des algébres associatives. Ann. Sci. École Norm. Sup. (3) 78 (1961), 163209.
[33]Schwede S.Stable homotopy of algebraic theories. Topology 40 (2001), 141.
[34]Shipley B. HZ-algebra spectra are differential graded algebras. To appear in Amer. J. Math.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Mathematical Proceedings of the Cambridge Philosophical Society
  • ISSN: 0305-0041
  • EISSN: 1469-8064
  • URL: /core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 46 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th January 2018. This data will be updated every 24 hours.