[1]Baues H.-J.. The algebra of secondary cohomology operations. Progr. Math. 297 (2006), 483 pp.

[2]Baues H.-J.. *The homotopy category of simply connected 4-manifolds*. London Math. Soc. Lecture Note Series **297** (Cambridge University Press, 2003), xii+184 pp.

[3]Baues H.-J.. Combinatorial homotopy and 4-dimensional complexes. De Gruyter Expositions in Math 2 (de Gruyter, 1991), 380 pp.

[4]Baues H.-J. and Dreckmann W.. The cohomology of homotopy categories and the general linear group. K-theory 3 (1989), 307–338.

[5]Baues H.-J.Hartl M. and Pirashvili T.. Quadratic categories and square rings. J. Pure Appl. Algebra 122 (1997), 1–40.

[6]Baues H.-J. and Iwase N.. Square rings associated to elements in homotopy groups of spheres. Contemp. Math. 274 (2001), 57–78.

[7]Baues H.-J.Jibladze M. and Pirashvili T.. Quadratic algebra of square groups. Preprint MPIM2006-9.

[8]Baues H.-J. and Minian E. C.. Crossed extensions of algebras and Hochschild cohomology. Homology, Homotopy Appl. 4 (2002), 63–82.

[9]Baues H.-J. and Pirashvili T.. Quadratic endofunctors of the category of groups. Adv. Math. 141 (1999), 167–206.

[10]Baues H.-J. and Pirashvili T.. A universal coefficient theorem for quadratic functors. J. Pure Appl. Algebra 148 (2000), 1–15.

[11]Baues H.-J. and Pirashvili T.. Comparison of Mac Lane, Shukla and Hochschild cohomologies. J. Reine Angew. Math. 598 (2006), 25–69.

[12]Baues H.-J. and Wirsching G.. Cohomology of small categories. J. Pure Appl. Algebra 38 (1985), 187–211.

[13]Eilenberg S. and Lane S. Mac. On the groups *H*(π,*n*), II. Ann. Math. 60 (1954), 49–139.

[14]Hochschild G.On the cohomology groups of an associative algebra. Ann. of Math. (2) 46 (1945), 58–67.

[15]Janelidze G.Internal crossed modules. Georgian Math. J. 10 (2003), 99–114.

[16]Jibladze M. and Pirashvili T.. Some linear extensions of a category of finitely generated free modules (russian). Soobshch. Akad. Nauk Gruzin. SSR 123 (1986), 481–484.

[17]Jibladze M. and Pirashvili T.. Cohomology of algebraic theories. J. Algebra 137 (1991), 253–296.

[18]Lazarev A.Homotopy theory of A∞ ring spectra and applications to MU-modules. K-theory 24 (2001), 243–281.

[19]Loday J.-L.. Spaces with finite many nontrivial homotopy groups. J. Pure Appl. Algebra 24 (1982), 179–202.

[20]Loday J.-L.. *Cyclic Homology* (Second edition. Grundlehren der Mathematischen Wissenschaften) **301** (Springer, 1998), xx+513 pp.

[21]Mac Lane S. Homologie des anneaux et des modules. Coll. Topologie Algebrique (Louvain, 1956), 55–80.

[22]Mac Lane S.Extensions and obstructions for rings. Ill. J. Math. 2 (1958), 316–345.

[23]Mac Lane S. and Whitehead J. H. C.. On the 3-type of a complex. Proc. Nat. Acad. Sci. USA 36 (1950), 41–48.

[24]Pirashvili T.Higher additivizations (Russian). Trudy Tbiliss. Mat. Inst. Razmadze Akad. Nauk Gruzin. SSR 91 (1988), 44–54.

[25]Pirashvili T.Models for the homotopy theory and cohomology of small categories (russian). Soobshch. Akad. Nauk Gruzin. SSR 129 (1988), 261–264.

[26]Pirashvili T. Cohomology of small categories in homotopical algebra. In: *K-theory and homological algebra* (*Tbilisi*, 1987–88) Lecture Notes in Math. **1437** (Springer, 1990), 268–302.

[27]Pirashvili T.. Polynomial approximation of and groups in functor categories. Comm. Algebra 21 (1993), 1705–1719. [28]Pirashvili T.. On the topological Hochschild homology of ℤ/*p* ^{k}ℤ. Comm. Algebra 23 (1995), no. 4, 1545–1549.

[29]Pirashvili T. On the cohomology of the category **NIL**. Appendix to [2].

[30]Pirashvili T. and Waldhausen F.. Mac Lane homology and topological Hochschild homology. J. Pure Appl. Algebra 82 (1992), 81–98.

[31]Quillen D. G.*Homotopical algebra*. Lecture Notes in Math. **43** (Springer, 1967), iv+156 pp.

[32]Shukla U.Cohomologie des algébres associatives. Ann. Sci. École Norm. Sup. (3) 78 (1961), 163–209.

[33]Schwede S.Stable homotopy of algebraic theories. Topology 40 (2001), 1–41.

[34]Shipley B. HZ-algebra spectra are differential graded algebras. To appear in *Amer. J. Math*.