Skip to main content Accessibility help
×
×
Home

Aberration Correction and Electron Holography

  • Hannes Lichte (a1), Martin Linck (a1), Dorin Geiger (a1) and Michael Lehmann (a2)
Abstract

Electron holography has been shown to allow a posteriori aberration correction. Therefore, an aberration corrector in the transmission electron microscope does not seem to be needed with electron holography to achieve atomic lateral resolution. However, to reach a signal resolution sufficient for detecting single light atoms and very small interatomic fields, the aberration corrector has turned out to be very helpful. The basic reason is the optimized use of the limited number of “coherent” electrons that are provided by the electron source, as described by the brightness. Finally, quantitative interpretation of atomic structures benefits from the holographic facilities of fine-tuning of the aberration coefficients a posteriori and from evaluating both amplitude and phase.

Copyright
Corresponding author
Corresponding author. E-mail: Hannes.Lichte@Triebenberg.de
References
Hide All
Erni, R., Rossell, M.D., Kisielowski, C. & Dahmen, U. (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.
Freitag, B., Knippels, G., Kujawa, S., Tiemeijer, P.C., Van Der Stam, M., Hubert, D., Kisielowski, C., Denes, P., Minor, A. & Dahmen, U. (2008). First performance measurements and application results of a new high brightness Schottky field emitter for HR-S/TEM at 80–300 kV acceleration voltage. In EMC, 1: Instrumentation and Methods, Luysberg, M., Tillmann, K. & Weirich, T. (Eds.), pp. 5556. Berlin-Heidelberg: Springer Verlag.
Freitag, B., Kujawa, S., Linck, M., Geiger, D., Niermann, T., Lehmann, M. & Lichte, H. (2009). Characterization of the holography performance of a Titan 80–300 with high brightness Schottky electron gun and image Cs-corrector at 300 kV acceleration voltage. Microsc Microanal 15(S2), 10981099.
Freitag, B., Stekelenburg, M., Rignalda, J. & Hubert, D. (2007). Atomic resolution Cs-corrected HR-S/TEM from 80–300 kV. Microsc Microanal 13(S2), CD1162CD1163.
Gabor, D. (1948). A new microscopic principle. Nature 161, 777778.
Geiger, D., Lichte, H., Linck, M. & Lehmann, M. (2008). Electron holography with a C s-corrected transmission electron microscope. Microsc Microanal 14, 6881.
Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B. & Urban, K. (1998). Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47, 395405.
Hanszen, K.-J., Morgenstern, B. & Rosenbruch, K.J. (1964). Aussagen der optischen Übertragungstheorie über Auflösung und Kontrast im elektronenmikroskopischen Bild (Findings of optical transfer-theory about resolution and contrast in an electronmicroscopic image). Z Angew Physik 16, 477486.
Kaiser, U. (2009). http://www.salve-project.de (detailed project description).
Lichte, H. (1991). Optimum focus for taking electron holograms. Ultramicroscopy 38, 1322.
Lichte, H. (1993). Parameters for high-resolution electron holography. Ultramicroscopy 51, 1520.
Lichte, H. (1996). Electron holography: Optimum position of the biprism in the electron microscope. Ultramicroscopy 64, 7986.
Lichte, H. (2008). Performance limits of electron holography. Ultramicroscopy 108, 256262.
Lichte, H., Formánek, P., Lenk, M., Linck, M., Matzeck, C., Lehmann, M. & Simon, P. (2007). Electron holography: Applications to materials questions. Annu Rev Mater Res 37, 539588.
Lichte, H. & Lehmann, M. (2008). Electron holography—Basics and applications. Rep Prog Phys 71, 016102.
Linck, M., Lehmann, M., Freitag, B., Kujawa, S. & Niermann, T. (2009). Applied wave optics on the atomic scale: Electron holography materials characterization in a Titan TEM. Proc MC2009, 1, pp. 1718. Graz, Austria: Verlag der TU Graz.
Möllenstedt, G. & Wahl, H. (1968). Elektronenholographie und Rekonstruktion mit Laserlicht (Electron holography and reconstruction with laser light). Die Naturwissenschaften 55, 340341.
Nagayama, K. & Danev, R. (2008). Phase contrast electron microscopy: Development of thin-film phase plates and biological applications. Philos Trans Roy Soc B 363, 21532162.
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.
Rose, H. (2010). Theoretical aspects of image formation in the aberration-corrected electron microscope. Ultramicroscopy 110, 488499.
Scherzer, O. (1936). Über einige Fehler von Elektronenlinsen (About some defects of electron lenses). Z Physik 101, 593603.
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.
Schultheiss, K., Zach, J., Gamm, B., Dries, M., Schröder, R.R. & Gerthsen, D. (2009). New developments in the field of electrostatic phase plates in transmission electron microscopy. Proc MC2009, 1, pp. 5152. Graz, Austria: Verlag der TU Graz.
Wahl, H. (1975). Bildebenenholographie mit Elektronen (Image plane holography using electrons). Thesis, Universität Tübingen.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed