Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T21:07:23.888Z Has data issue: false hasContentIssue false

Accurate Nanoscale Crystallography in Real-Space Using Scanning Transmission Electron Microscopy

Published online by Cambridge University Press:  14 July 2015

J. Houston Dycus
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Joshua S. Harris
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Xiahan Sang
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Chris M. Fancher
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Scott D. Findlay
Affiliation:
School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia
Adedapo A. Oni
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Tsung-ta E. Chan
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Carl C. Koch
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Jacob L. Jones
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
Leslie J. Allen
Affiliation:
School of Physics, University of Melbourne, Parkville, VIC 3010, Australia
Douglas L. Irving
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
James M. LeBeau*
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA
*
*Corresponding author. jmlebeau@ncsu.edu
Get access

Abstract

Here, we report reproducible and accurate measurement of crystallographic parameters using scanning transmission electron microscopy. This is made possible by removing drift and residual scan distortion. We demonstrate real-space lattice parameter measurements with <0.1% error for complex-layered chalcogenides Bi2Te3, Bi2Se3, and a Bi2Te2.7Se0.3 nanostructured alloy. Pairing the technique with atomic resolution spectroscopy, we connect local structure with chemistry and bonding. Combining these results with density functional theory, we show that the incorporation of Se into Bi2Te3 causes charge redistribution that anomalously increases the van der Waals gap between building blocks of the layered structure. The results show that atomic resolution imaging with electrons can accurately and robustly quantify crystallography at the nanoscale.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L., D’Alfonso, A. & Findlay, S. (2015). Modelling the inelastic scattering of fast electrons. Ultramicroscopy 151, 1122.Google Scholar
Billinge, S.J.L. & Levin, I. (2007). The problem with determining atomic structure at the nanoscale. Science 316, 561565.Google Scholar
Björkman, T., Gulans, A., Krasheninnikov, A.V. & Nieminen, R.M. (2012). Are we van der Waals ready? J Phys Condens Matter 24, 424218.Google Scholar
Blöchl, P.E. (1994). Projector augmented-wave method. Phys Rev B 50, 17953.Google Scholar
Chan, T.-T.E., LeBeau, J.M., Venkatasubramanian, R., Thomas, P., Stuart, J. & Koch, C.C. (2013). Carrier concentration modulation by hot pressing pressure in n-type nanostructured Bi(Se)Te alloy. Appl Phys Lett 103, 144106.Google Scholar
Denton, A.R. & Ashcroft, N.W. (1991). Vegard’s law. Phys Rev A 43, 31613164.Google Scholar
Drabble, J.R. & Goodman, C.H.L. (1958). Chemical bonding in bismuth telluride. J Phys Chem Solids 5, 142144.CrossRefGoogle Scholar
Dycus, J.H., White, R.M., Pierce, J.M., Venkatasubramanian, R. & LeBeau, J.M. (2013). Atomic scale structure and chemistry of Bi2Te3/GaAs interfaces grown by metallorganic van der Waals epitaxy. Appl Phys Lett 102, 081601081601-4.Google Scholar
Esteves, G., Fancher, C.M. & Jones, J.L. (2014). In situ characterization of polycrystalline ferroelectrics using x-ray and neutron diffraction. J Mater Res 30, 340–356.Google Scholar
Harl, J. & Kresse, G. (2008). Cohesive energy curves for noble gas solids calculated by adiabatic connection fluctuation-dissipation theory. Phys Rev B 77, 045136.Google Scholar
Harl, J. & Kresse, G. (2009). Accurate bulk properties from approximate many-body techniques. Phys Rev Lett 103, 056401.CrossRefGoogle ScholarPubMed
Harl, J., Schimka, L. & Kresse, G. (2010). Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys Rev B 81, 115126.Google Scholar
Henkelman, G., Arnaldsson, A. & Jónsson, H. (2006). A fast and robust algorithm for bader decomposition of charge density. Comput Mater Sci 36, 354360.Google Scholar
Jiang, Y., Wang, Y., Sagendorf, J., West, D., Kou, X., Wei, X., He, L., Wang, K.L., Zhang, S. & Zhang, Z. (2013). Direct atom-by-atom chemical identification of nanostructures and defects of topological insulators. Nano Lett 13, 28512856.Google Scholar
Kim, Y.-M., He, J., Biegalski, M.D., Ambaye, H., Lauter, V., Christen, H.M., Pantelides, S.T., Pennycook, S.J., Kalinin, S.V. & Borisevich, A.Y. (2012). Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat Mater 11, 888894.Google Scholar
Kimoto, K., Asaka, T., Yu, X., Nagai, T., Matsui, Y. & Ishizuka, K. (2010). Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy 110, 778782.Google Scholar
Kresse, G. & Furthmüller, J. (1996a). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6, 1550.Google Scholar
Kresse, G. & Furthmüller, J. (1996b). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54, 11169.Google Scholar
Kresse, G. & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Phys Rev B 47, 558561.Google Scholar
Kresse, G. & Hafner, J. (1994). Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49, 14251.Google Scholar
Kresse, G. & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59, 1758.Google Scholar
Lan, Y., Poudel, B., Ma, Y., Wang, D., Dresselhaus, M.S., Chen, G. & Ren, Z. (2009). Structure study of bulk nanograined thermoelectric bismuth antimony telluride. Nano Lett 9, 14191422.Google Scholar
Larson, A.C. & Von Dreele, R.B. (2004). General Structure Analysis System (GSAS). Los Alamos National Laboratory Report No. Laur 86-748 (unpublished).Google Scholar
Martin, J., Wang, L., Chen, L. & Nolas, G.S. (2009). Enhanced See-beck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys Rev B 79, 115311.Google Scholar
Nakajima, S. (1963). The crystal structure of Bi2Te3−x Se x . J Phys Chem Solids 24, 479485.Google Scholar
Page, K., Proffen, T., Niederberger, M. & Seshadri, R. (2010). Probing local dipoles and ligand structure in BaTiO 3 nanoparticles. Chem Mater 22, 43864391.Google Scholar
Park, K., Nomura, Y., Arita, R., Llobet, A. & Louca, D. (2013). Local strain and anharmonicity in the bonding of Bi2Se3Gx Te x topological insulators. Phys Rev B 88, 224108.Google Scholar
Pennycook, S.J. & Nellist, P.D. (2011). Scanning transmission electron microscopy: Imaging and analysis. Springer-Verlag, New York.Google Scholar
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys Rev Lett 77, 3865.Google Scholar
Perdew, J., Burke, K. & Ernzerhof, M. (1997). Generalized gradient approximation made simple [Phys Rev Lett 77, 3865 (1996)] Phys Rev Lett 78, 13961396.CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M.S., Chen, G. & Ren, Z. (2008). High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634638.CrossRefGoogle ScholarPubMed
Sang, X. & LeBeau, J.M. (2014). Revolving scanning transmission electron microscopy: Correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 2835.CrossRefGoogle ScholarPubMed
Sang, X., Oni, A.A. & LeBeau, J.M. (2014). Atom column indexing: Atomic resolution image analysis through a matrix representation. Microsc Microanal 20, 17641771.Google Scholar
Sanville, E., Kenny, S.D., Smith, R. & Henkelman, G. (2007). Improved grid-based algorithm for bader charge allocation. J Comput Chem 28, 899908.Google Scholar
So, Y.-G. & Kimoto, K. (2012). Effect of specimen misalignment on local structure analysis using annular dark-field imaging. J Electron Microsc (Tokyo) 61, 207215.Google Scholar
Tang, W., Sanville, E. & Henkelman, G. (2009). A grid-based bader analysis algorithm without lattice bias. J Phys Condens Matt 21, 084204.Google Scholar
Thomas, J.M. (2012). Centenary: The birth of X-ray crystallography. Nature 491, 186187.Google Scholar
Toby, B.H. (2001). Expgui, a graphical user interface for GSAS. J Appl Crystallogr 34, 210213.Google Scholar
Wiese, J.R. & Muldawer, L. (1960). Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. J Phys Chem Solids 15, 1316.Google Scholar
Yankovich, A.B., Berkels, B., Dahmen, W., Binev, P., Sanchez, S.I., Bradley, S.A., Li, A., Szlufarska, I. & Voyles, P.M. (2014). Picometre-precision analysis of scanning transmission electron microscopy images of platinum nanocatalysts. Nat Commun 5, 4155.Google Scholar