Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T04:25:55.952Z Has data issue: false hasContentIssue false

Atomic Resolution Phase Contrast Imaging and In-Line Holography Using Variable Voltage and Dose Rate

Published online by Cambridge University Press:  22 October 2012

Bastian Barton
Affiliation:
Materials Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Bin Jiang
Affiliation:
FEI Company, 5350 NE Dawson Creek Drive, Hillsboro, OR 97124, USA
ChengYu Song
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
Petra Specht
Affiliation:
Department of Materials Science and Engineering, University of California at Berkeley, Hearst Mining Bldg., Berkeley, CA 94720, USA
Hector Calderon
Affiliation:
Escuela Superior de Física y Matemáticas, IPN, Ed. 9 UPALM Zacatenco, D.F. 07738, Mexico
Christian Kisielowski*
Affiliation:
National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
*
*Corresponding author. E-mail cfkisielowski@lbl.gov
Get access

Abstract

The TEAM 0.5 electron microscope is employed to demonstrate atomic resolution phase contrast imaging and focal series reconstruction with acceleration voltages between 20 and 300 kV and a variable dose rate. A monochromator with an energy spread of ≤0.1 eV is used for dose variation by a factor of 1,000 and to provide a beam-limiting aperture. The sub-Ångstrøm performance of the instrument remains uncompromised. Using samples obtained from silicon wafers by chemical etching, the [200] atom dumbbell distance of 1.36 Å can be resolved in single images and reconstructed exit wave functions at 300, 80, and 50 kV. At 20 kV, atomic resolution <2 Å is readily available but limited by residual lens aberrations at large scattering angles. Exit wave functions reconstructed from images recorded under low dose rate conditions show sharper atom peaks as compared to high dose rate. The observed dose rate dependence of the signal is explained by a reduction of beam-induced atom displacements. If a combined sample and instrument instability is considered, the experimental image contrast can be matched quantitatively to simulations. The described development allows for atomic resolution transmission electron microscopy of interfaces between soft and hard materials over a wide range of voltages and electron doses.

Type
Techniques and Equipment Development
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alem, N., Erni, R., Kisielowski, C., Rossell, M.D., Gannett, W. & Zettl, A. (2009). Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B 80, 1554259. Google Scholar
Alem, N., Yazyev, O.V., Kisielowski, C., Denes, P., Dahmen, U., Hartel, P., Haider, M., Bischoff, M., Jiang, B., Louie, S.G. & Zettl, A. (2011). Probing the out-of-plane distortion of single point defects in atomically thin hexagonal boron nitride at the picometer scale. Phys Rev Lett 106, 126102. Google Scholar
Alloyeau, D., Freitag, B., Dag, S., Wang, L.W. & Kisielowski, C. (2009). Atomic-resolution three-dimensional imaging of germanium self-interstitials near a surface: Aberration-corrected transmission electron microscopy. Phys Rev B 80, 014114. Google Scholar
Bammes, B.E., Jakana, J., Schmid, M.F. & Chiu, W. (2010). Radiation damage effects at four specimen temperatures from 4 to 100 K. J Struct Biol 169, 331341.Google Scholar
Barton, B., Song, C. & Kisielowski, C. (2011). Atomic resolution at 50–300 kV obtained using low dose rate HRTEM. Microsc Microanal 17, 12661267.Google Scholar
Battaglia, M., Contarato, D., Denes, P. & Giubilato, P. (2009). Cluster imaging with a direct detection CMOS pixel sensor in transmission electron microscopy. Nucl Instrum Methods Phys Res A 608, 363365.CrossRefGoogle Scholar
Dahmen, U., Erni, R., Radmilovic, V., Kisielowski, C., Rossell, M.-D. & Denes, P. (2009). Background, status and future of the transmission electron aberration-corrected microscope project. Phil Trans R Soc A 367, 37953808.Google Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.Google Scholar
Erni, R. (2010). Aberration-Corrected Imaging in Transmission Electron Microscopy. London: Imperial College Press.Google Scholar
Flensburg, C. & Stewart, R.F. (1999). Lattice dynamical Debye-Waller factor for silicon. Phys Rev B 60, 284291.Google Scholar
Forbes, B.D., D'Alfonso, A.J., Findlay, S.D., Van Dyck, D., LeBeau, J.M., Stemmer, S. & Allen, L.J. (2011). Thermal diffuse scattering in transmission electron microscopy. Ultramicroscopy 111, 16701680.CrossRefGoogle ScholarPubMed
Freitag, B., Knippels, G., Kujawa, S., Van der Stam, M., Hubert, D., Tiemeijer, P.C., Kisielowski, C., Denes, P., Minor, A. & Dahmen, U. (2008). First performance measurements and application results of a new high brightness Schottky field emitter for HR-S/TEM at 80-300kV acceleration voltage. Micros Microanal 14(S2), 13701371.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Hansen, L.P., Ramasse, Q.M., Kisielowski, C., Brorson, M., Johnson, E., Topsøe, H. & Helveg, S. (2011). Atomic-scale edge structures on industrial-style MoS2 nanocatalysts. Angew Chem Int Ed 50, 1015310156.Google Scholar
Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28, 171193.Google Scholar
Howie, A. (2004). Hunting the Stobbs factor. Ultramicroscopy 98, 7379.Google Scholar
Hsieh, W.-K., Chen, F.-R., Kai, J.-J. & Kirkland, A.I. (2004). Resolution extension and exit wave reconstruction in complex HREM. Ultramicroscopy 98, 99114.Google Scholar
Hytch, M.J. & Stobbs, W.M. (1994). Quantitative comparison of high resolution TEM images with image simulations. Ultramicroscopy 53, 6372.Google Scholar
Kabius, B., Hartel, P., Haider, M., Müller, H., Uhlemann, S., Loebau, U., Zach, J. & Rose, H. (2009). First application of Cc-corrected imaging for high-resolution and energy-filtered TEM. J Electron Microsc 58, 147155.Google Scholar
Kaiser, U., Biskupek, J., Meyer, J.C., Leschner, J., Lechner, L., Rose, H., Stöger-Pollach, M., Khlobystov, A.N., Hartel, P., Müller, H., Haider, M., Eyhusen, S. & Benner, G. (2011). Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy 111, 12391246.Google Scholar
Kim, Y.-K. & Rudd, M.E. (1994). Binary-encounter-dipole model for electron-impact ionization. Phys Rev A 50, 39543967.Google Scholar
Kisielowski, C., Freitag, B., Bischoff, M., van Lin, H., Lazar, S., Knippels, G., Tiemeijer, P., van der Stam, M., von Harrach, S., Stekelenburg, M., Haider, M., Muller, H., Hartel, P., Kabius, B., Miller, D., Petrov, I., Olson, E., Donchev, T., Kenik, E.A., Lupini, A., Bentley, J., Pennycook, S., Minor, A.M., Schmid, A.K., Duden, T., Radmilovic, V., Ramasse, Q., Erni, R., Watanabe, M., Stach, E., Denes, P. & Dahmen, U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscopy with 0.5 Å information limit. Microsc Microanal 14, 454462.Google Scholar
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A. & Thust, A. (2001). Imaging columns of the light elements C, N, and O with sub-Angstrom resolution. Ultramicroscopy 89, 243263.Google Scholar
Kisielowski, C. & Jinschek, J. (2002). On the feasibility to investigate point defects by advanced electron microscopy. In Physik Mikrostruktuierter Halbleiter 27, Specht, P., Wetherford, T.R., Kiesel, P., Marek, T. & Malzer, S. (Eds.), pp. 137144. Erlangen-Nuernberg: The University of Erlangen.Google Scholar
Kisielowski, C., Ramasse, Q., Hansen, L.P., Brorson, M., Carlsson, A., Molenbroek, A.M., Topsoe, H. & Helveg, S. (2010a). Imaging MoS2 nanocatalysts with single-atom sensitivity. Angew Chem Int Ed 49, 27082710.Google Scholar
Kisielowski, C., Specht, P., Alloyeau, D., Erni, R. & Ramasse, Q. (2009). Aberration-corrected electron microscopy imaging for nanoelectronics applications. In Frontiers of Characterization and Metrology for Nanoelectronics, Seiler, D.G., Diebold, A.C., McDonald, R., Garner, C.M., Herr, D., Khosla, R.P. & Secula, E.M. (Eds.), pp. 231241. American Institute of Physics Conference Proceedings 1173 . Melville, NY: American Institute of Physics.Google Scholar
Kisielowski, C, Specht, P., Barton, B. & Jiang, B. (2010b). Improving on phase contrast by harvesting more spatial frequencies at different acceleration voltages. In Proceedings of the 17th International Microscopy Congress, Rio de Janeiro, Brazil, September 19–24, 2010. Google Scholar
Lentzen, M. (2004). The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. Ultramicroscopy 99, 211220.Google Scholar
Medalia, O., Weber, I., Frangakis, A.S., Nicastro, D., Gerisch, G. & Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells visualized by cryoelectron tomography. Science 298, 12091213.Google Scholar
O'Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielowski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pan, M. & Thust, A. (2001). Sub-Ångström high-resolution transmission electron microscopy at 300 keV. Ultramicroscopy 89, 215241.Google Scholar
Rose, H. (2009). Future trends in aberration-corrected electron microscopy. Phil Trans R Soc A 367, 38093823.Google Scholar
Sawada, H., Hosokava, F., Sasaki, T., Yuasa, S., Kawazoe, M., Terao, M., Kaneyama, T., Kondo, Y., Kimoto, K. & Suenaga, K. (2010). Chromatic aberration correction by combination concave lens. Microsc Microanal 16, 116117.Google Scholar
Schroeder, B. & Geiger, J. (1972). Electron-spectrometric study of amorphous germanium and silicon in the two-phonon region. Phys Rev Lett 28, 301303.Google Scholar
Somorjai, G.A. & Li, Y. (2010). Introduction to Surface Chemistry and Catalysis. Hoboken, NJ: Wiley and Sons.Google Scholar
Specht, P., Barton, D., Kang, J., Cieslinski, R., Dubon, O. & Kisielowski, C. (2011a). Direct imaging of rhodium crystal surface structures with signal recovery by low dose microscopy. Microsc Microanal 17 (S2), 10641065.Google Scholar
Specht, P., Gulotty, R.J., Barton, D., Cieslinski, R., Rozeveld, S., Kang, J.H., Dubon, O.D. & Kisielowski, C. (2011b). Quantitative contrast evaluation of an industry-style rhodium nanocatalyst with single atom sensitivity. Chem Cat Chem 3, 10341037.Google Scholar
Tiemeijer, P.C., Bischoff, M., Freitag, B. & Kisielowski, C. (2012). Using a monochromator to improve the resolution in TEM to below 0.5 A. Part I: Creating highly coherent monochromated illumination. Ultramicroscopy 114, 7281.CrossRefGoogle ScholarPubMed
Van Aert, S., Geuens, P., Van Dyck, D., Kisielowski, C. & Jinschek, J.R. (2007). Electron channelling based crystallography. Ultramicroscopy 107, 551558.Google Scholar
Zobelli, A., Gloter, A., Ewels, C., Seifert, G. & Colliex, C. (2007). Electron knock-on cross section of carbon and boron nitride nanotubes. Phys Rev B 75, 245402. Google Scholar
Supplementary material: PDF

Bastian Barton et al Supplementary Material

Appendix

Download Bastian Barton et al Supplementary Material(PDF)
PDF 71.9 KB