Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-z9m8x Total loading time: 0.452 Render date: 2022-10-04T14:54:06.676Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue

Published online by Cambridge University Press:  15 July 2015

Jaroslaw Jacak
Affiliation:
Department of Medical Engineering, University of Applied Sciences Upper Austria, Garnisonstraße 21, 4020 Linz, Austria Institute of Applied Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040 Linz, Austria
Susanne Schaller
Affiliation:
Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
Daniela Borgmann
Affiliation:
Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
Stephan M. Winkler*
Affiliation:
Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg, Austria
*
*Corresponding author.stephan.winkler@fh-hagenberg.at

Abstract

We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.

Type
Biological Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, P.R. & Lemonde, S. (2004). 5-HT1A receptors, gene repression, and depression: Guilt by association. Neuroscientist 10(6), 575593.CrossRefGoogle ScholarPubMed
Arcelli, C. & Sanniti di Baja, G. (1993). Euclidean skeleton via centre-of-maximal-disc extraction. Image Vision Comput 11(3), 163173.CrossRefGoogle Scholar
Babcock, H., Sigal, Y.M. & Zhuang, X. (2012). A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Optical Nanosc 1, 6.CrossRefGoogle ScholarPubMed
Bao, M., Guo, S., Tang, Q. & Zhang, F. (2009). Optimization of the bwmorph Function in the MATLAB Image Processing Toolbox for Binary Skeleton Computation. International Conference on Computational Intelligence and Natural Computing (CINC '09), Vol. 2.Google Scholar
Baune, B.T., Hohoff, C., Mortensen, L.S., Deckert, J., Arolt, V. & Domschke, K. (2008). Serotonin transporter polymorphism (5-HTTLPR) association with melancholic depression: A female specific effect? Depress Anxiety 25(11), 920925.CrossRefGoogle ScholarPubMed
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Royal Statistical Soc 57(1), 289300.Google Scholar
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J. & Hess, H.F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 16421645.CrossRefGoogle ScholarPubMed
Cho, W., Lam, K. & Siu, W. (2003). Extraction of the Euclidean skeleton based on a connectivity criterion. Image Vision Comput 36(3), 721729.Google Scholar
Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. (2010). Superresolution imaging of chemical synapses in the brain. Neuron 68(5), 843856.CrossRefGoogle Scholar
Davies, D.L. & Bouldin, D.W. (1979). A Cluster Separation Measure. IEEE Trans Pattern Anal Mach Intell 1(2), 224227.CrossRefGoogle ScholarPubMed
Epanechnikov, V.A. (1969). Non-parametric estimation of a multivariate probability density. Theory Probability Applications 14, 153158.CrossRefGoogle Scholar
Haralick, R.M. & Shapiro, L.G. (1993). Computer and Robot Vision. Addison-Wesley, 650pp.Google Scholar
Hess, S.T., Girirajan, T.P. & Mason, M.D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11), 42584272.CrossRefGoogle ScholarPubMed
Hesse, J., Jacak, J., Kasper, M., Regl, G., Eichberger, T., Winklmayr, M., Aberger, F., Sonnleitner, M., Schlapak, R., Howorka, S., Muresan, L., Frischauf, A.M. & Schütz, G.J. (2006). RNA expression profiling at the single molecule level. Genome Res 16(8), 10411045.CrossRefGoogle ScholarPubMed
Huang, F., Hartwich, T.M., Rivera-Molina, F.E., Lin, Y., Duim, W.C., Long, J.J., Uchil, P.D., Myers, J.R., Baird, M.A., Mothes, W., Davidson, M.W., Toomre, D. & Bewersdorf, J. (2013). Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods 10(7), 653658.CrossRefGoogle ScholarPubMed
Jacak, J., Schnidar, H., Muresan, L., Regl, G., Frischauf, A., Aberger, F., Schütz, G.J. & Hesse, J. (2013). Expression analysis of multiple myeloma CD138 negative progenitor cells using single molecule microarray readout. J Biotechnol 164(4), 525530.CrossRefGoogle ScholarPubMed
Jaccard, P. (1901). Etude comparative de la distribution flora le dans une portion des Alpes et des Jura. Bull Soc Vaud Sci Naturel 37(1), 547579.Google Scholar
Kay, K.R., Smith, C., Wright, A.K., Serrano-Pozo, A., Pooler, A.M., Koffie, R., Bastin, M.E., Bak, T.H., Abrahams, S., Kopeikina, K.J., McGuone, D., Frosch, M.P., Gillingwater, T.H., Hyman, B.T. & Spires-Jones, T.L. (2013). Studying synapses in human brain with array tomography and electron microscopy. Nat Protoc 8(7), 13661380.CrossRefGoogle ScholarPubMed
Kechkar, A., Nair, D., Heilemann, M., Choquet, D. & Sibarita, J.B. (2013). Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS One 8(4), e62918.CrossRefGoogle ScholarPubMed
Kong, T.Y. & Rosenfeld, A. (1996). Topological Algorithms for Digital Image Processing. Elsevier Science Inc., 302pp.Google Scholar
Lakadamyali, M. (2014). Super-resolution microscopy: Going live and going fast. Chemphyschem 15(4), 630636.CrossRefGoogle ScholarPubMed
Lam, L., Lee, S.W. & Suen, C.Y. (1992). Thinning methodologies – A Comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9), 879.CrossRefGoogle Scholar
Lambe, E.K., Fillman, S.G., Webster, M.J. & Shannon Weickert, C. (2011). Serotonin receptor expression in human prefrontal cortex: Balancing excitation and inhibition across postnatal development. PLoS One 6(7), e22799.CrossRefGoogle ScholarPubMed
Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. (2010). Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5), 377381.CrossRefGoogle ScholarPubMed
Muresan, L., Jacak, J., Klement, E.P., Hesse, J. & Schütz, G.J. (2010). Microarray analysis at single-molecule resolution. IEEE Trans Nanobiosci 9(1), 5158.CrossRefGoogle ScholarPubMed
Nanguneri, S., Flottmann, B., Horstmann, H., Heilemann, M. & Kuner, T. (2012). Three-dimensional, tomographic super-resolution fluorescence imaging of serially Sectioned thick samples. PLoS One 7(5), e38098.CrossRefGoogle ScholarPubMed
Olivo-Marin, J.C. (2002). Extraction of spots in biological images using multiscale products. Pattern Recognit 35(9), 19891996.CrossRefGoogle Scholar
Otsu, N. (1975). A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1), 6266.CrossRefGoogle Scholar
Parzen, E. (1962). On estimation of a probability density function and mode. Ann Mathematical Stat 33(3), 1065.CrossRefGoogle Scholar
Pratt, W.K. (1991). Digital Image Processing: PIKS Inside, 3rd edition. John Wiley & Sons.Google Scholar
Qian, H., Sheetz, M.P. & Elson, E.L. (1991). Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4), 910921.CrossRefGoogle ScholarPubMed
Quan, T., Li, P., Long, F., Zeng, S., Luo, Q., Hedde, P.N., Nienhaus, G.U. & Huang, Z.L. (2010). Ultra-fast, high-precision image analysis for localization-based super resolution microscopy. Opt Express 18(11), 1186711876.CrossRefGoogle ScholarPubMed
Rees, E.J., Erdelyi, M., Pinotsi, D., Knight, A., Metcalf, D. & Kaminski, C.F. (2012). Blind assessment of localization microscope image resolution. Optical Nanosc 1(12), 110.CrossRefGoogle Scholar
Rust, M.J., Bates, M. & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10), 793795.CrossRefGoogle Scholar
Sams, M., Silye, R., Gohring, J., Muresan, L., Schilcher, K. & Jacak, J. (2014). Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue. J Biomed Opt 19(1), 011021.CrossRefGoogle ScholarPubMed
Savitz, J., Lucki, I. & Drevets, W.C. (2009). 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88(1), 1731.CrossRefGoogle ScholarPubMed
Saxton, M.J. (1994). Single-particle tracking: models of directed transport. Biophys J 67(5), 21102119.CrossRefGoogle ScholarPubMed
Schoen, I., Ries, J., Klotzsch, E., Ewers, H. & Vogel, V. (2011). Binding-activated localization microscopy of DNA structures. Nano Lett 11(9), 40084011.CrossRefGoogle ScholarPubMed
Schütz, G.J., Schindler, H. & Schmidt, T. (1997). Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73(2), 10731080.CrossRefGoogle ScholarPubMed
Shim, S.H., Xia, C., Zhong, G., Babcock, H.P., Vaughan, J.C., Huang, B., Wang, X., Xu, C., Bi, G.Q. & Zhuang, X. (2012). Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109(35), 1397813983.CrossRefGoogle ScholarPubMed
Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. (2008 a). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5), 417423.CrossRefGoogle ScholarPubMed
Shroff, H., White, H. & Betzig, E. (2008 b). Photoactivated localization microscopy (PALM) of adhesion complexes, Chapter 4, Curr Protoc Cell Biol, Unit 4, p. 21.Google Scholar
Sinko, J., Kakonyi, R., Rees, E., Metcalf, D., Knight, A.E., Kaminski, C.F., Szabo, G. & Erdelyi, M. (2014). TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy. Biomed Opt Express 5(3), 778787.CrossRefGoogle ScholarPubMed
Starck, J.L., Fadili, J. & Murtagh, F. (2007). The undecimated wavelet decomposition and its reconstruction. IEEE Trans Image Process 16(2), 297309.CrossRefGoogle ScholarPubMed
Thompson, R.E., Larson, D.R. & Webb, W.W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5), 27752783.CrossRefGoogle ScholarPubMed
Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. (2008). Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2), 159161.CrossRefGoogle ScholarPubMed
van de Linde, S., Sauer, M. & Heilemann, M. (2008). Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J Struct Biol 164(3), 250254.CrossRefGoogle ScholarPubMed
Wieser, S. & Schütz, G.J. (2008). Tracking single molecules in the live cell plasma membrane – Do’s and Don’t’s. Methods 46(2), 131140.CrossRefGoogle ScholarPubMed
Supplementary material: Image

Jacak supplementary material

Figure S1

Download Jacak supplementary material(Image)
Image 23 MB
Supplementary material: Image

Jacak supplementary material

Figure S2

Download Jacak supplementary material(Image)
Image 1 MB
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *