Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-20T02:51:10.327Z Has data issue: false hasContentIssue false

Development of Wide Field of View Three-Dimensional Field Ion Microscopy and High-Fidelity Reconstruction Algorithms to the Study of Defects in Nuclear Materials

Published online by Cambridge University Press:  10 March 2021

Benjamin Klaes*
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Rodrigue Lardé
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Fabien Delaroche
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Constantinos Hatzoglou
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Stefan Parvianien
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Jonathan Houard
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Gérald Da Costa
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Antoine Normand
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Martin Brault
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
Bertrand Radiguet
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
François Vurpillot
Affiliation:
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France
*
*Author for correspondence: Benjamin Klaes, E-mail: benjamin.klaes@univ-rouen.fr
Get access

Abstract

This article presents a fast and highly efficient algorithm developed to reconstruct a three-dimensional (3D) volume with a high spatial precision from a set of field ion microscopy (FIM) images, and specific tools developed to characterize crystallographic lattice and defects. A set of FIM digital images and image processing algorithms allow the construction of a 3D reconstruction of the sample at the atomic scale. The capability of the 3D FIM to resolve the crystallographic lattice and the finest defects in metals opens a new way to analyze materials. This spatial precision was quantified on tungsten, analyzed at different analyzing conditions. A specific data mining tool, based on Fourier transforms, was also developed to characterize lattice distortions in the reconstructed volumes. This tool has been used in simulated and experimental volumes to successfully locate and characterize defects such as dislocations and grain boundaries.

Type
Software and Instrumentation
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bas, P, Bostel, A, Deconihout, B & Blavette, D (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87–88, 298304. doi:10.1016/0169-4332(94)00561-3CrossRefGoogle Scholar
Beckey, HD (1977). Principles of Field Ionization and Field Desorption Mass Spectrometry, 1st ed. Oxford [Eng.], New York: International Series in Analytical Chemistry; v. 61. Pergamon Press.Google Scholar
Burgers, JM (1940). Geometrical considerations concerning the structural irregularities to be assumed in a crystal. Proc Phys Soc 52, 2333. doi:10.1088/0959-5309/52/1/304CrossRefGoogle Scholar
Cerezo, A, Hetherington, MG, Hyde, JM, Miller, MK, Smith, GDW & Underkoffler, JS (1992). Visualisation of three-dimensional microstructures. Surf Sci 266, 471480. doi:10.1016/0039-6028(92)91063-HCrossRefGoogle Scholar
Chen, YC & Seidman, DN (1971). On the atomic resolution of a field ion microscope. Surf Sci 26, 6184. doi:10.1016/0039-6028(71)90114-2CrossRefGoogle Scholar
Dagan, M, Gault, B, Smith, GDW, Bagot, PAJ & Moody, MP (2017). Automated atom-by-atom three-dimensional (3D) reconstruction of field ion microscopy data. Microsc Microanal 23, 255268. doi:10.1017/S1431927617000277CrossRefGoogle ScholarPubMed
Dagan, M, Hanna, LR, Xu, A, Roberts, SG, Smith, GDW, Gault, B, Edmondson, PD, Bagot, PAJ & Moody, MP (2015). Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387394. doi:10.1016/j.ultramic.2015.02.017CrossRefGoogle ScholarPubMed
De Backer, A, Jones, L, Lobato, I, Altantzis, T, Goris, B, Nellist, PD, Bals, S & Van Aert, S (2017). Three-dimensional atomic models from a single projection using Z-contrast imaging: Verification by electron tomography and opportunities. Nanoscale 9, 87918798. doi:10.1039/C7NR02656KCrossRefGoogle ScholarPubMed
De Geuser, F, Gault, B, Bostel, A & Vurpillot, F (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536543. doi:10.1016/j.susc.2006.10.019CrossRefGoogle Scholar
Djurabekova, F, Parviainen, S, Pohjonen, A & Nordlund, K (2011). Atomistic modeling of metal surfaces under electric fields: Direct coupling of electric fields to a molecular dynamics algorithm. Phys Rev E 83, 026704. doi:10.1103/PhysRevE.83.026704CrossRefGoogle ScholarPubMed
Frank, FC (1951). LXXXIII. Crystal dislocations.—Elementary concepts and definitions. Lond Edinb Dublin Philos Mag J Sci 42, 809819. doi:10.1080/14786445108561310CrossRefGoogle Scholar
Gault, B (Ed.) (2012). Atom Probe Microscopy, Springer Series in Materials Science. New York: Springer.Google Scholar
Gault, B, Haley, D, de Geuser, F, Moody, MP, Marquis, EA, Larson, DJ & Geiser, BP (2011). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457. doi:10.1016/j.ultramic.2010.11.016CrossRefGoogle ScholarPubMed
Geiser, BP, Kelly, TF, Larson, DJ, Schneir, J & Roberts, JP (2007). Spatial distribution maps for atom probe tomography. Microsc Microanal 13, 437447. doi:10.1017/S1431927607070948CrossRefGoogle ScholarPubMed
Ghaly, M, Nordlund, K & Averback, RS (1999). Molecular dynamics investigations of surface damage produced by kiloelectronvolt self-bombardment of solids. Philos Mag A 79, 795820. doi:10.1080/01418619908210332CrossRefGoogle Scholar
Gomer, R (1953). Work function in field emission. Chemisorption. J Chem Phys 21, 18691876. doi:10.1063/1.1698681CrossRefGoogle Scholar
Gomer, R (1961). Field Emission and Field Ionization. Cambridge: Havard University Press.Google Scholar
Hirel, P (2015).Atomsk: A tool for manipulating and converting atomic data files.Computer Physics Communications. 197, 212219.doi: 10.1016/j.cpc.2015.07.012.CrossRefGoogle Scholar
Katnagallu, S, Nematollahi, A, Dagan, M, Moody, M, Grabowski, B, Gault, B, Raabe, D & Neugebauer, J (2017). High fidelity reconstruction of experimental field ion microscopy data by atomic relaxation simulations. Microsc Microanal 23, 642643. doi:10.1017/S1431927617003877CrossRefGoogle Scholar
Klaes, B, Lardé, R, Delaroche, F, Parviainen, S, Rolland, N, Katnagallu, S, Gault, B & Vurpillot, F (2020). A model to predict image formation in the three-dimensional field ion microscope. Comput Phys Commun 107317. doi:10.1016/j.cpc.2020.107317Google Scholar
Larson, DJ, Gault, B, Geiser, BP, De Geuser, F & Vurpillot, F (2013). Atom probe tomography spatial reconstruction: Status and directions. Curr Opin Solid State Mater Sci 17, 236247. doi:10.1016/j.cossms.2013.09.002CrossRefGoogle Scholar
Lefebvre-Ulrikson, W (Ed.) (2016). Atom Probe Tomography: Put Theory Into Practice. London: Academic Press.Google Scholar
Miller, MK (Ed.) (1996). Atom Probe Field Ion Microscopy, Monographs on the Physics and Chemistry of Materials. New York: Clarendon Press; Oxford: Oxford University Press.Google Scholar
Miller, MK (2000). Atom Probe Tomography: Analysis at the Atomic Level. New York: Springer.CrossRefGoogle Scholar
Miller, MK (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. New York: Springer.CrossRefGoogle Scholar
Moody, MP, Ceguerra, AV, Breen, AJ, Cui, XY, Gault, B, Stephenson, LT, Marceau, RKW, Powles, RC & Ringer, SP (2014). Atomically resolved tomography to directly inform simulations for structure–property relationships. Nat Commun 5, 5501. doi:10.1038/ncomms6501CrossRefGoogle ScholarPubMed
Müller, EW (1951). Das feldionenmikroskop. Z Für Phys 131, 136142. doi:10.1007/BF01329651CrossRefGoogle Scholar
Müller, EW (1966). Field ion microscopy. Phys Teach 4, 5356. doi:10.1119/1.2350901CrossRefGoogle Scholar
Nordlund, K, Ghaly, M, Averback, RS, Caturla, M, Diaz de la Rubia, T & Tarus, J (1998). Defect production in collision cascades in elemental semiconductors and fcc metals. Phys Rev B 57, 75567570. doi:10.1103/PhysRevB.57.7556CrossRefGoogle Scholar
Rolland, N, Vurpillot, F, Duguay, S & Blavette, D (2015). A meshless algorithm to model field evaporation in atom probe tomography. Microsc Microanal 21, 16491656. doi:10.1017/S1431927615015184CrossRefGoogle ScholarPubMed
Seidman, DN, Current, MI, Pramanik, D & Wei, C-Y (1981). Direct observations of the primary state of radiation damage of ion-irradiated tungsten and platinum. Nucl Instrum Methods 182–183, 477481. doi:10.1016/0029-554X(81)90718-7CrossRefGoogle Scholar
Southworth, HN & Walls, JM (1978). The projection geometry of the field-ion image. Surf Sci 75, 129140. doi:10.1016/0039-6028(78)90057-2CrossRefGoogle Scholar
Stukowski, A (2010). Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Model Simul Mater Sci Eng 18, 015012. doi:10.1088/0965-0393/18/1/015012CrossRefGoogle Scholar
Stukowski, A & Albe, K (2010). Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model Simul Mater Sci Eng 18, 085001. doi:10.1088/0965-0393/18/8/085001CrossRefGoogle Scholar
Stukowski, A, Bulatov, VV & Arsenlis, A (2012). Automated identification and indexing of dislocations in crystal interfaces. Model Simul Mater Sci Eng 20, 085007. doi:10.1088/0965-0393/20/8/085007CrossRefGoogle Scholar
Vurpillot, F, Bostel, A & Blavette, D (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129. doi:10.1063/1.126545CrossRefGoogle Scholar
Vurpillot, F, Bostel, A, Menand, A & Blavette, D (1999). Trajectories of field emitted ions in 3D atom-probe. Eur Phys J Appl Phys 6, 217221. doi:10.1051/epjap:1999173CrossRefGoogle Scholar
Vurpillot, F, Da Costa, G, Menand, A & Blavette, D (2001). Structural analyses in three-dimensional atom probe: A Fourier transform approach. J Microsc 203, 295302. doi:10.1046/j.1365-2818.2001.00923.xCrossRefGoogle ScholarPubMed
Vurpillot, F, Gilbert, M & Deconihout, B (2007). Towards the three-dimensional field ion microscope. Surf Interface Anal 39, 273277. doi:10.1002/sia.2490CrossRefGoogle Scholar
Wang, C, Duan, H, Chen, C, Wu, P, Qi, D, Ye, H, Jin, H-J, Xin, HL & Du, K (2020). Three-dimensional atomic structure of grain boundaries resolved by atomic-resolution electron tomography. Matter 3, 19992011. doi:10.1016/j.matt.2020.09.003CrossRefGoogle Scholar
Wang, X, Hatzoglou, C, Sneed, B, Fan, Z, Guo, W, Jin, K, Chen, D, Bei, H, Wang, Y, Weber, WJ, Zhang, Y, Gault, B, More, KL, Vurpillot, F & Poplawsky, JD (2020). Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements. Nat Commun 11. doi:10.1038/s41467-020-14832-wGoogle ScholarPubMed