Skip to main content Accessibility help
×
Home
Hostname: page-component-6c8bd87754-fppf4 Total loading time: 0.268 Render date: 2022-01-18T07:56:54.727Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Extravascular CX3CR1+ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen

Published online by Cambridge University Press:  03 May 2013

Deborah S. Barkauskas
Affiliation:
Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
Teresa A. Evans
Affiliation:
Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
Jay Myers
Affiliation:
Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
Agne Petrosiute
Affiliation:
Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
Jerry Silver
Affiliation:
Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
Alex Y. Huang*
Affiliation:
Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
*
* Corresponding author. E-mail: alex.y.huang@case.edu

Abstract

Within the central nervous system (CNS), antigen-presenting cells (APCs) play a critical role in orchestrating inflammatory responses where they present CNS-derived antigens to immune cells that are recruited from the circulation to the cerebrospinal fluid, parenchyma, and perivascular space. Available data indicate that APCs do so indirectly from outside of CNS vessels without direct access to luminal contents. Here, we applied high-resolution, dynamic intravital two-photon laser scanning microscopy to directly visualize extravascular CX3CR1+ APC behavior deep within undisrupted CNS tissues in two distinct anatomical sites under three different inflammatory stimuli. Surprisingly, we observed that CNS-resident APCs dynamically extend their cellular processes across an intact vessel wall into the vascular lumen with preservation of vessel integrity. While only a small number of APCs displayed intravascular extensions in intact, noninflamed vessels in the brain and the spinal cord, the frequency of projections increased over days in an experimental autoimmune encephalomyelitis model, whereas the number of projections remained stable compared to baseline days after tissue injury such as CNS tumor infiltration and aseptic spinal cord trauma. Our observation of this unique behavior by parenchyma CX3CR1+ cells in the CNS argues for further exploration into their functional role in antigen sampling and immune cell recruitment.

Type
Omaha Imaging Symposium
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

These authors contributed equally to this work.

References

Almolda, B., Gonzalez, B. & Castellano, B. (2011). Antigen presentation in EAE: Role of microglia, macrophages and dendritic cells. Front Biosci 16, 11571171.CrossRefGoogle ScholarPubMed
Aloisi, F. (2001). Immune function of microglia. Glia 36(2), 165179.CrossRefGoogle ScholarPubMed
Bartholomaus, I., Kawakami, N., Odoardi, F., Schlager, C., Miljkovic, D., Ellwart, J.W., Klinkert, W.E., Flugel-Koch, C., Issekutz, T.B., Wekerle, H. & Flugel, A. (2009). Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462(7269), 9498.CrossRefGoogle ScholarPubMed
Carson, M.J., Doose, J.M., Melchior, B., Schmid, C.D. & Ploix, C.C. (2006). CNS immune privilege: Hiding in plain sight. Immunol Rev 213, 4865.CrossRefGoogle ScholarPubMed
Chieppa, M., Rescigno, M., Huang, A.Y. & Germain, R.N. (2006). Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J Exp Med 203(13), 28412852.CrossRefGoogle ScholarPubMed
Choi, J.H., Do, Y., Cheong, C., Koh, H., Boscardin, S.B., Oh, Y.S., Bozzacco, L., Trumpfheller, C., Park, C.G. & Steinman, R.M. (2009). Identification of antigen-presenting dendritic cells in mouse aorta and cardiac valves. J Exp Med 206(3), 497505.CrossRefGoogle ScholarPubMed
Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., van der Valk, P., Beyer, C., Amor, S. & Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia 60(10), 14681480.CrossRefGoogle Scholar
D'Agostino, P.M., Gottfried-Blackmore, A., Anandasabapathy, N. & Bulloch, K. (2012). Brain dendritic cells: Biology and pathology. Acta Neuropathol 124(5), 599614.CrossRefGoogle ScholarPubMed
de Vos, A.F., van Meurs, M., Brok, H.P., Boven, L.A., Hintzen, R.Q., van der Valk, P., Ravid, R., Rensing, S., Boon, L., t Hart, B.A. & Laman, J.D. (2002). Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169(10), 54155423.CrossRefGoogle ScholarPubMed
Drew, P.J., Shih, A.Y., Driscoll, J.D., Knutsen, P.M., Blinder, P., Davalos, D., Akassoglou, K., Tsai, P.S. & Kleinfeld, D. (2010). Chronic optical access through a polished and reinforced thinned skull. Nat Methods 7(12), 981984.CrossRefGoogle ScholarPubMed
Emmenlauer, M., Ronneberger, O., Ponti, A., Schwarb, P., Griffa, A., Filippi, A., Nitschke, R., Driever, W. & Burkhardt, H. (2009). XuvTools: Free, fast and reliable stitching of large 3D datasets. J Microscopy 233(1), 4260.CrossRefGoogle ScholarPubMed
Engelhardt, B. & Ransohoff, R.M. (2012). Capture, crawl, cross: The T cell code to breach the blood-brain barriers. Trends Immunol 33(12), 579589.CrossRefGoogle Scholar
Feng, G., Mellor, R.H., Bernstein, M., Keller-Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W. & Sanes, J.R. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28(1), 4151.CrossRefGoogle ScholarPubMed
Galea, I., Bechmann, I. & Perry, V.H. (2007a). What is immune privilege (not)? Trends Immunol 28(1), 1218.CrossRefGoogle ScholarPubMed
Galea, I., Bernardes-Silva, M., Forse, P.A., van Rooijen, N., Liblau, R.S. & Perry, V.H. (2007b). An antigen-specific pathway for CD8 T cells across the blood-brain barrier. J Exp Med 204(9), 20232030.CrossRefGoogle ScholarPubMed
Girard, J.P., Moussion, C. & Forster, R. (2012). HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12(11), 762773.CrossRefGoogle ScholarPubMed
Goverman, J. (2009). Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6), 393407.CrossRefGoogle ScholarPubMed
Guillemin, G.J. & Brew, B.J. (2004). Microglia, macrophages, perivascular macrophages, and pericytes: a review of function and identification. J Leukoc Biol 75(3), 388397.CrossRefGoogle ScholarPubMed
Huang, D., Shi, F.D., Jung, S., Pien, G.C., Wang, J., Salazar-Mather, T.P., He, T.T., Weaver, J.T., Ljunggren, H.G., Biron, C.A., Littman, D.R. & Ransohoff, R.M. (2006). The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 20(7), 896905.CrossRefGoogle ScholarPubMed
Huang, J., Frischer, J.S., Serur, A., Kadenhe, A., Yokoi, A., McCrudden, K.W., New, T., O'Toole, K., Zabski, S., Rudge, J.S., Holash, J., Yancopoulos, G.D., Yamashiro, D.J. & Kandel, J.J. (2003). Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. PNAS 100(13), 77857790.CrossRefGoogle ScholarPubMed
Iliff, J.J., Wang, M., Liao, Y., Plogg, B.A., Peng, W., Gundersen, G.A., Benveniste, H., Vates, G.E., Deane, R., Goldman, S.A., Nagelhus, E.A. & Nedergaard, M. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147), 147ra111. CrossRefGoogle ScholarPubMed
Imai, Y. & Kohsaka, S. (2002). Intracellular signaling in M-CSF-induced microglia activation: Role of Iba1. Glia 40(2), 164174.CrossRefGoogle ScholarPubMed
Ishii, T., Asai, T., Urakami, T. & Oku, N. (2010). Accumulation of macromolecules in brain parenchyma in acute phase of cerebral infarction/reperfusion. Brain Res 1321, 164168.CrossRefGoogle ScholarPubMed
Itano, A.A. & Jenkins, M.K. (2003). Antigen presentation to naive CD4 T cells in the lymph node. Nat Immunol 4(8), 733739.CrossRefGoogle ScholarPubMed
Jahrling, N., Becker, K. & Dodt, H.U. (2009). 3D-reconstruction of blood vessels by ultramicroscopy. Organogenesis 5(4), 227230.CrossRefGoogle ScholarPubMed
Jung, S., Aliberti, J., Graemmel, P., Sunshine, M.J., Kreutzberg, G.W., Sher, A. & Littman, D.R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol 20(11), 41064114.CrossRefGoogle ScholarPubMed
Kaminski, M., Bechmann, I., Pohland, M., Kiwit, J., Nitsch, R. & Glumm, J. (2012). Migration of monocytes after intracerebral injection at entorhinal cortex lesion site. J Leukoc Biol 92(1), 3139.CrossRefGoogle ScholarPubMed
Kanazawa, H., Ohsawa, K., Sasaki, Y., Kohsaka, S. & Imai, Y. (2002). Macrophage/microglia-specific protein Iba1 enhances membrane ruffling and Rac activation via phospholipase C-gamma-dependent pathway. J Biol Chem 277(22), 2002620032.CrossRefGoogle ScholarPubMed
Khanna, K.M., Blair, D.A., Vella, A.T., McSorley, S.J., Datta, S.K. & Lefrancois, L. (2010). T cell and APC dynamics in situ control the outcome of vaccination. J Immunol 185(1), 239252.CrossRefGoogle ScholarPubMed
Lassmann, H. (2011). Review: The architecture of inflammatory demyelinating lesions: Implications for studies on pathogenesis. Neuropathol Appl Neurobiol 37(7), 698710.CrossRefGoogle ScholarPubMed
Lawson, L.J., Perry, V.H., Dri, P. & Gordon, S. (1990). Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 39(1), 151170.CrossRefGoogle ScholarPubMed
Lee, E.J., Rosenbaum, J.T. & Planck, S.R. (2010). Epifluorescence intravital microscopy of murine corneal dendritic cells. Invest Ophthalmol Vis Sci 51(4), 21012108.CrossRefGoogle ScholarPubMed
Lelouard, H., Fallet, M., de Bovis, B., Méresse, S. & Gorvel, J.P. (2012). Peyer's patch dendritic cells sample antigens by extending dendrites through M cell-specific transcellular pores. Gastroenterology 142(3), 592–601.e3.CrossRefGoogle ScholarPubMed
Locatelli, G., Wortge, S., Buch, T., Ingold, B., Frommer, F., Sobottka, B., Kruger, M., Karram, K., Buhlmann, C., Bechmann, I., Heppner, F.L., Waisman, A. & Becher, B. (2012). Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci 15(4), 543550.CrossRefGoogle Scholar
Marker, D.F., Tremblay, M.E., Lu, S.M., Majewska, A.K. & Gelbard, H.A. (2010). A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. J Vis Exp 43, e2059. Google Scholar
McGavern, D.B. & Kang, S.S. (2011). Illuminating viral infections in the nervous system. Nat Rev Immunol 11(5), 318329.CrossRefGoogle Scholar
McMahon, E.J., Bailey, S.L. & Miller, S.D. (2006). CNS dendritic cells: Critical participants in CNS inflammation? Neurochem Int 49(2), 195203.CrossRefGoogle ScholarPubMed
Mi, S., Hu, B., Hahm, K., Luo, Y., Kam Hui, E.S., Yuan, Q., Wong, W.M., Wang, L., Su, H., Chu, T.H., Guo, J., Zhang, W., So, K.F., Pepinsky, B., Shao, Z., Graff, C., Garber, E., Jung, V., Wu, E.X. & Wu, W. (2007). LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nat Med 13(10), 12281233.CrossRefGoogle ScholarPubMed
Mittelbronn, M., Dietz, K., Schluesener, H.J. & Meyermann, R. (2001). Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol 101(3), 249255.Google ScholarPubMed
Mostany, R. & Portera-Cailliau, C. (2008a). A craniotomy surgery procedure for chronic brain imaging. J Vis Exp 12, e680. Google Scholar
Mostany, R. & Portera-Cailliau, C. (2008b). A method for 2-photon imaging of blood flow in the neocortex through a cranial window. J Vis Exp 12, e678. Google Scholar
Niess, J.H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B.A., Vyas, J.M., Boes, M., Ploegh, H.L., Fox, J.G., Littman, D.R. & Reinecker, H.C. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307(5707), 254258.CrossRefGoogle ScholarPubMed
Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo . Science 308(5726), 13141318.CrossRefGoogle ScholarPubMed
Pachner, A.R. (2011). Experimental models of multiple sclerosis. Curr Opin Neurol 24(3), 291299.CrossRefGoogle ScholarPubMed
Pareek, T.K., Lam, E., Zheng, X., Askew, D., Kulkarni, A.B., Chance, M.R., Huang, A.Y., Cooke, K.R. & Letterio, J.J. (2010). Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. J Exp Med 207(11), 25072519.CrossRefGoogle Scholar
Prodinger, C., Bunse, J., Krüger, M., Schiefenhövel, F., Brandt, C., Laman, J.D., Greter, M., Immig, K., Heppner, F., Becher, B. & Bechmann, I. (2011). CD11c-expressing cells reside in the juxtavascular parenchyma and extend processes into the glia limitans of the mouse nervous system. Acta Neuropathol 121(4), 445458.CrossRefGoogle ScholarPubMed
Ransohoff, R.M. (2012). Animal models of multiple sclerosis: The good, the bad and the bottom line. Nat Neurosci 15(8), 10741077.CrossRefGoogle ScholarPubMed
Ransohoff, R.M. & Cardona, A.E. (2010). The myeloid cells of the central nervous system parenchyma. Nature 468(7321), 253262.CrossRefGoogle ScholarPubMed
Ransohoff, R.M. & Engelhardt, B. (2012). The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol 12(9), 623635.CrossRefGoogle ScholarPubMed
Roozendaal, R., Mempel, T.R., Pitcher, L.A., Gonzalez, S.F., Verschoor, A., Mebius, R.E., von Andrian, U.H. & Carroll, M.C. (2009). Conduits mediate transport of low-molecular-weight antigen to lymph node follicles. Immunity 30(2), 264276.CrossRefGoogle ScholarPubMed
Saederup, N., Cardona, A.E., Croft, K., Mizutani, M., Cotleur, A.C., Tsou, C.L., Ransohoff, R.M. & Charo, I.F. (2010). Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. PLoS One 5(10), e13693. CrossRefGoogle ScholarPubMed
Sallusto, F., Impellizzieri, D., Basso, C., Laroni, A., Uccelli, A., Lanzavecchia, A. & Engelhardt, B. (2012). T-cell trafficking in the central nervous system. Immunol Rev 248(1), 216227.CrossRefGoogle ScholarPubMed
Shen, Y., Tenney, A.P., Busch, S.A., Horn, K.P., Cuascut, F.X., Liu, K., He, Z., Silver, J. & Flanagan, J.G. (2009). PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration. Science 326(5952), 592596.CrossRefGoogle ScholarPubMed
Stoll, G. & Jander, S. (1999). The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58(3), 233247.CrossRefGoogle ScholarPubMed
Stromnes, I.M. & Goverman, J.M. (2006). Active induction of experimental allergic encephalomyelitis. Nat Protoc 1(4), 18101819.CrossRefGoogle ScholarPubMed
Takano, K., Kojima, T., Go, M., Murata, M., Ichimiya, S., Himi, T. & Sawada, N. (2005). HLA-DR- and CD11c-positive dendritic cells penetrate beyond well-developed epithelial tight junctions in human nasal mucosa of allergic rhinitis. J Histochem Cytochem 53(5), 611619.CrossRefGoogle ScholarPubMed
Thornton, E.E., Looney, M.R., Bose, O., Sen, D., Sheppard, D., Locksley, R., Huang, X. & Krummel, M.F. (2012). Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J Exp Med 209(6), 11831199.CrossRefGoogle Scholar
Xu, H.T., Pan, F., Yang, G. & Gan, W.B. (2007). Choice of cranial window type for in vivo imaging affects dendritic spine turnover in the cortex. Nat Neurosci 10(5), 549551.CrossRefGoogle ScholarPubMed
Yang, G., Pan, F., Parkhurst, C.N., Grutzendler, J. & Gan, W.B. (2010). Thinned-skull cranial window technique for long-term imaging of the cortex in live mice. Nat Protoc 5(2), 201208.CrossRefGoogle ScholarPubMed

Barkauskas et al. supplementary movie

Movie 1

Download Barkauskas et al. supplementary movie(Video)
Video 8 MB

Barkauskas et al. supplementary movie

Movie 2

Download Barkauskas et al. supplementary movie(Video)
Video 5 MB

Barkauskas et al. supplementary movie

Movie 3

Download Barkauskas et al. supplementary movie(Video)
Video 7 MB

Barkauskas et al. supplementary movie

Movie 4

Download Barkauskas et al. supplementary movie(Video)
Video 16 MB
Supplementary material: PDF

Barkauskas et al. supplementary material

Supplementary figures

Download Barkauskas et al. supplementary material(PDF)
PDF 695 KB
20
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Extravascular CX3CR1+ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Extravascular CX3CR1+ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Extravascular CX3CR1+ Cells Extend Intravascular Dendritic Processes into Intact Central Nervous System Vessel Lumen
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *