Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-10-05T05:19:31.007Z Has data issue: false hasContentIssue false

FIB Plan View Preparation and Electron Tomography of Ga-Containing Droplets Induced by Melt-Back Etching in Si

Published online by Cambridge University Press:  07 January 2016

Katharina I. Gries*
Affiliation:
Faculty of Physics and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
Katharina Werner
Affiliation:
Faculty of Physics and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
Andreas Beyer
Affiliation:
Faculty of Physics and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
Wolfgang Stolz
Affiliation:
Faculty of Physics and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
Kerstin Volz
Affiliation:
Faculty of Physics and Materials Science Center, Philipps-Universität Marburg, Hans-Meerwein-Straße 6, 35032 Marburg, Germany
*
Get access

Abstract

Melt-back etching is an effect that can occur for gallium (Ga) containing III/V semiconductors grown on Si. Since this effect influences interfaces between the two compounds and therefore the physical characteristics of the material composition, it is desirable to understand its driving forces. Therefore, we investigated Ga grown on Si (001) via metal organic chemical vapor deposition using trimethyl Ga as a precursor. As a result of the melt-back etching, Ga-containing droplets formed on the Si surface which reach into the Si wafer. The shape of these structures was analyzed by plan view investigation and cross sectional tomography in a (scanning) transmission electron microscope. For plan view preparation a focused ion beam was used to avoid damage to the Ga-containing structures, which are sensitive to the chemicals normally used during conventional plan view preparation. Combining the results of both investigation methods confirms that the Ga-containing structure within the Si exhibits a pyramid shape with facets along the Si {111} lattice planes.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arslan, I., Tong, J.R. & Midgley, P.A. (2006). Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials. Ultramicroscopy 106, 9941000.CrossRefGoogle ScholarPubMed
Baumeister, W. (1999). Electron tomography of molecules and cells. Trends in Cell Biology 9, 8185.CrossRefGoogle ScholarPubMed
Crowther, R.A., DeRosier, D.J. & Klug, A. (1970). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy. Proc Roy Soc Lond A 317, 319340.Google Scholar
Dadgar, A., Poschenrieder, M., Bläsing, J., Contreras, O., Bertram, F., Riemann, T., Reiher, A., Kunze, M., Daumiller, I., Krtschil, A., Diez, A., Kaluza, A., Modlich, A., Kamp, M., Christen, J., Ponce, F.A., Kohn, E. & Krost, A. (2003). MOVPE growth of GaN on Si(111) substrates. J Cryst Growth 248, 556562.CrossRefGoogle Scholar
Fox, D., Verre, R., O’Dowd, B.J., Arora, S.K., Faulkner, C.C., Shvets, I.V., & Zhang, H. (2012). Investigation of coupled cobalt–silver nanoparticle system by plan view TEM. Progr Natural Sci Mater Int 22, 186192.CrossRefGoogle Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F.A. (1997). Focused ion beam milling and micromanipulation lift-out for site specific cross-section tem specimen preparation. In Symposium Z – Specimen Preparation for Transmission Electron Microscopy…IV , Proceedings of the Materials Research Society 480, 1927.CrossRefGoogle Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30, 197204.CrossRefGoogle Scholar
Gilbert, P. (1972 a). Iterative methods for the three-dimensional reconstruction of an object from projections. J theor Biol 36, 105117.CrossRefGoogle ScholarPubMed
Gilbert, P.F.C. (1972 b). The reconstruction of a three-dimensional structure from projections and its application to electron microscopy – II. Direct methods. Proc R Soc Lond B 182, 89102.Google ScholarPubMed
Guha, S. & Bojarczuk, N.A. (1998). Ultraviolet and violet GaN light emitting diodes on Si. Appl Phys Lett 72, 415417.CrossRefGoogle Scholar
Ishikawa, H., Yamamoto, K., Egawa, T., Soga, T., Jimbo, T. & Umeno, M. (1998). Thermal stability of GaN on (111) Si substrate. J Cryst Growth 189–190, 178182.CrossRefGoogle Scholar
Ishizaka, A. & Shiraki, Y. (1986). Low temperature surface cleaning of Si and its application to Si MBE. J Electrochem Soc 133, 666671.CrossRefGoogle Scholar
Jublot, M. & Texier, M. (2014). Sample preparation by focused ion beam micromachining for transmission electron microscopy imaging in front-view. Micron 56, 6367.CrossRefGoogle ScholarPubMed
Juluri, R.R., Rath, A., Ghosh, A., Bhukta, A., Sathyavathi, R., Rao, D.N., Müller, K., Schowalter, M., Frank, K., Grieb, T., Krause, F., Rosenauer, A. & Satyam, P.V. (2014). Coherently embedded Ag nanostructures in Si: 3D imaging and their application to SERS. Sci Rep 4, 4633.CrossRefGoogle Scholar
Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. (1996). Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116, 7176.CrossRefGoogle ScholarPubMed
Lang, J.R., Faucher, J., Tomasulo, S., Nay Yaung, K. & Larry Lee, M. (2013). Comparison of GaAsP solar cells on GaP and GaP/Si. Appl Phys Lett 103, 9210292105.CrossRefGoogle Scholar
Longo, D.M., Howe, J.M. & Johnson, W.C. (1999). Development of a focused ion beam (FIB) technique to minimize X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) of FIB specimens in the transmission electron microscope (TEM). Ultramicroscopy 80, 6984.CrossRefGoogle Scholar
Magnum, B.W. & Thornton, D.D. (1979). Determination of the triple-point temperature of gallium. Metrologia 15, 201215.Google Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bull 32, 400407.CrossRefGoogle Scholar
Ohnishi, T. & Ishitani, T. (1993). Method for separating specimen and method for analyzing the specimen separated by the specimen separating method. Patent US 5270552 A.Google Scholar
O’Shea, K.J., McGrouther, D., Ferguson, C.A., Jungbauer, M., Hühn, S., Moshnyaga, V. & MacLaren, D.A. (2014). Fabrication of high quality plan-view TEM specimens using the focused ion beam. Micron 66, 915.CrossRefGoogle ScholarPubMed
Razeghi, M., Defour, M., Blondeau, R., Omnes, F., Maurel, P., Acher, O., Brillouet, F., C-Fan, J.C. & Salerno, J. (1988). First cw operation of a Ga0.25In0.75As0.5P0.5-InP laser on a Si substrate. Appl Phys Lett 53, 23892390.CrossRefGoogle Scholar
Saka, H. & Nagaya, G. (1995). Plan-view transmission electron microscopy observation of a crack tip in Si. Phil Mag Lett 72, 251255.CrossRefGoogle Scholar
Sato, K., Shikida, M., Matsushima, Y., Yamashiro, T., Asaumi, K., Iriye, Y. & Yamamoto, M. (1998). Characterization of orientation-dependent etching properties of single-crystal Si: effects of KOH concentration. Sensor Actuat A-Phys 64, 8793.CrossRefGoogle Scholar
Strittmatter, A., Krost, A., Bläsing, J. & Bimberg, D. (1999). High quality GaN layers grown by metalorganic chemical vapor deposition on Si(111) Substrates. Phys Status Solidi A 176, 611614.3.0.CO;2-1>CrossRefGoogle Scholar
Takeuchi, T., Amano, H., Hiramatsu, K., Sawaki, N. & Akasaki, I. (1991). Growth of single crystalline GaN film on Si substrate using 3C-SiC as an intermediate layer. J Cryst Growth 115, 634638.CrossRefGoogle Scholar
Volz, K., Beyer, A., Witte, W., Ohlmann, J., Nemeth, I., Kunert, B. & Stolz, W. (2011). GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth 315, 3747.CrossRefGoogle Scholar
Watanabe, A., Takeuchi, T., Hirosawa, K., Amano, H., Hiramatsu, K. & Akasaki, I. (1993). The growth of single crystalline GaN on a Si substrate using AIN as an intermediate layer. J Cryst Growth 128, 391396.CrossRefGoogle Scholar
Werner, K., Beyer, A., Oelerich, J.O., Baranovskii, S.D., Stolz, W. & Volz, K. (2014). Structural characteristics of Ga metal deposited on Si (001) by MOCVD. J Cryst Growth 405, 102109.CrossRefGoogle Scholar
Yamane, K., Kobayashi, T., Furukawa, Y., Okada, H., Yonezu, H. & Wakahara, A. (2009). Growth of pit-free GaP on Si by suppression of a surface reaction at an initial growth stage. J Cryst Growth 311, 794797.CrossRefGoogle Scholar