Hostname: page-component-758b78586c-72lk7 Total loading time: 0 Render date: 2023-11-28T15:31:12.677Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM

Published online by Cambridge University Press:  14 March 2014

Michael H. Nielsen
Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
Dongsheng Li
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Hengzhong Zhang
Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
Shaul Aloni
Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
T. Yong-Jin Han
Physical Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
Cathrine Frandsen
Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
Jong Seto
Department of Physical Chemistry, University of Konstanz, D-78457 Konstanz, Germany Department of Chemistry, École Normale Supérieure, Paris 75005, France
Jillian F. Banfield
Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
Helmut Cölfen
Department of Physical Chemistry, University of Konstanz, D-78457 Konstanz, Germany
James J. De Yoreo*
Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
*Corresponding author.
Get access


Recent ex situ observations of crystallization in both natural and synthetic systems indicate that the classical models of nucleation and growth are inaccurate. However, in situ observations that can provide direct evidence for alternative models have been lacking due to the limited temporal and spatial resolution of experimental techniques that can observe dynamic processes in a bulk solution. Here we report results from liquid cell transmission electron microscopy studies of nucleation and growth of Au, CaCO3, and iron oxide nanoparticles. We show how these in situ data can be used to obtain direct evidence for the mechanisms underlying nanoparticle crystallization as well as dynamic information that provide constraints on important energetic parameters not available through ex situ methods.

In Situ Special Section
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Banfield, J.F., Welch, S.A., Zhang, H.Z., Ebert, T.T. & Penn, R.L. (2000). Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289(5480), 751754.Google Scholar
Baumgartner, J., Dey, A., Bomans, P.H.H., Le Coadou, C., Fratzl, P., Sommerdijk, N. & Faivre, D. (2013). Nucleation and growth of magnetite from solution. Nat Mater 12(4), 310314.Google Scholar
Bewernitz, M.A., Gebauer, D., Long, J., Cölfen, H. & Gower, L.B. (2012). A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discuss 159, 291312.Google Scholar
Burton, W.K., Cabrera, N. & Frank, F.C. (1951). The growth of crystals and the equilibrium structure of their surfaces. Phil Trans R Soc A 243(866), 299358.Google Scholar
Chen, Q., Smith, J.M., Park, J., Kim, K., HO, D., Rasool, H.I., Zettl, A. & Alivisatos, A.P. (2013). 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy Nano Lett 13, 45564561.Google Scholar
Cho, K.S., Talapin, D.V., Gaschler, W. & Murray, C.B. (2005). Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J Am Chem Soc 127(19), 71407147.Google Scholar
Cölfen, H. & Antonietti, M. (2005). Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew Chem-Int Edit 44(35), 55765591.Google Scholar
Cölfen, H. & Antonietti, M. (2008). Mesocrystals and Non-Classical Crystallization. San Francisco, USA: John Wiley and Sons.Google Scholar
de Yoreo, J.J. (2013). Nucleation: More than one pathway. Nat Mater 12, 284285.Google Scholar
de Yoreo, J.J. & Vekilov, P.G. (2003). Principles of crystal nucleation and growth. In Biomineralization, Dove, P.M., DeYoreo, J.J. & Weiner, S. (Eds.), pp. 5793. Washington: Mineralogical Soc America.Google Scholar
de Yoreo, J.J., Waychunas, G.A., Jun, Y.-S. & Fernandez-Martinez, A. (In press). In situ investigations of carbonate nucleation on mineral and organic surfaces. In Geochemistry of Geological CO 2 Sequestration , Bourg, I., Steefel, C. & Navrotsky, A. (Eds.), pp. 229257. Washington: Mineralogical Society America.Google Scholar
Dey, A., Bomans, P.H.H., Muller, F.A., Will, J., Frederik, P.M., de With, G. & Sommerdijk, N. (2010). The role of prenucleation clusters in surface-induced calcium phosphate crystallization. Nat Mater 9(12), 10101014.Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.Google Scholar
Faatz, M., Grohn, F. & Wegner, G. (2004). Amorphous calcium carbonate: Synthesis and potential intermediate in biomineralization. Adv Mater 16(12), 9961000.Google Scholar
Frandsen, C., Legg, B.A., Comolli, L.R., Zhang, H., Gilbert, B., Johnson, E. & Banfield, J.F. (2014). Aggregation-induced growth and transformation of β-FeOOH nanorods to micron-sized α-Fe2O3 spindles. Cryst Eng Comm 16, 14511458.Google Scholar
Gebauer, D. & Cölfen, H. (2011). Prenucleation clusters and non-classical nucleation. Nano Today 6(6), 564584.Google Scholar
Gebauer, D., Volkel, A. & Cölfen, H. (2008). Stable prenucleation calcium carbonate clusters. Science 322(5909), 18191822.Google Scholar
Gibbs, J.W. (1876). On the equilibrium of heterogeneous substances. Trans Connect Acad Sci 3, 108248.Google Scholar
Gibbs, J.W. (1878). On the equilibrium of heterogeneous substances. Trans Connect Acad Sci 16, 343524.Google Scholar
Habraken, W., Tao, J.H., Brylka, L.J., Friedrich, H., Bertinetti, L., Schenk, A.S., Verch, A., Dmitrovic, V., Bomans, P.H.H., Frederik, P.M., Laven, J., van der Schoot, P., Aichmayer, B., de With, G., Deyoreo, J.J. & Sommerdijk, N. (2013). Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nat Commun, 4, Article no. 1507.Google Scholar
Hackney, S.A., Biancaniello, F.S., Yoon, D.N. & Handwerker, C.A. (1986). Observations on crystal defects associated with diffusion induced grain boundary migration in Cu-Zn. Scripta Metallurgica 20(6), 937942.Google Scholar
Joesten, R.L. (1991). Kinetics of coarsening and diffusion-controlled material growth. In Contact Metamorphism, Reviews in Mineralogy vol. 26, pp. 507582 (Eds.), pp. 507582. Washington, DC: Mineralogy Society of America.Google Scholar
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A. & Sutter, E.A. (2013). In situ liquid cell electron microscopy of the solution growth of Au−Pd core−shell nanostructures. Nano Lett 13, 29642970.Google Scholar
Kashchiev, D. (1999). Nucleation: Basic Theory with Applications. Oxford, UK: Butterworths-Heinemann.Google Scholar
Killian, C.E., Metzler, R.A., Gong, Y.U.T., Olson, I.C., Aizenberg, J., Politi, Y., WILT, F.H., Scholl, A., Young, A., Doran, A., Kunz, M., Tamura, N., Coppersmith, S.N. & Gilbert, P. (2009). Mechanism of calcite co-orientation in the sea urchin tooth. J Am Chem Soc 131(51), 1840418409.Google Scholar
Li, D.S., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & de Yoreo, J.J. (2012). Direction-specific interactions control crystal growth by oriented attachment. Science 336(6084), 10141018.Google Scholar
Liao, H.G., Cui, L.K., Whitelam, S. & Zheng, H.M. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science 336(6084), 10111014.Google Scholar
Liu, Y., Tai, K. & Dillon, S.J. (2013). Growth kinetics and morphological evolution of ZnO precipitated solution. Chem Mater 25, 29272933.Google Scholar
Mann, S. (2001). Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry. Oxford, UK: Oxford University Press.Google Scholar
Nielsen, M.H., Lee, J.R.I., Hu, Q.N., Han, T.Y.J. & de Yoreo, J.J. (2012). Structural evolution, formation pathways and energetic controls during template-directed nucleation of CaCO3. Faraday Discuss 159, 105121.Google Scholar
Ocana, M., Morales, M.P. & Serna, C.J. (1995). The growth-mechanism of alpha-fe2o3 ellipsoidal particles in solution. J Colloid Interface Sci 171(1), 8591.Google Scholar
Parent, L.R., Robinson, D.B., Woehl, T.J., Ristenpart, W.D., Evans, J.E., Browning, N.D. & Arslan, I. (2012). Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano 6(4), 35893596.Google Scholar
Passchier, C.W. & Trouw, R.A.J. (1998). Microtectonics. Wurzburg. Springer.Google Scholar
Penn, R.L. & Banfield, J.F. (1998 a). Imperfect oriented attachment: dislocation generation in defect-free nanocrystals. Science 281, 969971.Google Scholar
Penn, R.L. & Banfield, J.F. (1998 b). Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2. Mineralogist 83, 10771082.Google Scholar
Penn, R.L., Zhu, C., Xu, H. & Veblen, D. (2001). Iron oxide coatings on sand grains from the Atlantic coastal plain: High-resolution transmission electron microscopy characterization. Geology 29, 843846.Google Scholar
Politi, Y., Arad, T., Klein, E., Weiner, S. & Addadi, L. (2004). Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science 306(5699), 11611164.Google Scholar
Pouget, E.M., Bomans, P.H.H., Goos, J.A.C.M., Frederik, P.M., de With, G. & Sommerdijk, N.A.J.M. (2009). The initial stages of template-controlled caco3 formation revealed by cryo-TEM. Science 323(5920), 14551458.Google Scholar
Quigley, D., Freeman, C.L., Harding, J.H. & Rodger, P.M. (2011). Sampling the structure of calcium carbonate nanoparticles with metadynamics. J Chem Phys 134(4), 044703.Google Scholar
Radisic, A., Ross, F.M. & Searson, P.C. (2006 a). In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B 110(15), 78627868.Google Scholar
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006 b). Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Letters 6(2), 238242.Google Scholar
Raiteri, P. & Gale, J.D. (2011). Water is the key to nonclassical nucleation of amorphous calcium carbonate. J Am Chem Soc 132(49), 1762317634.Google Scholar
van Driessche, A.E.S., Benning, L.G., Rodriguez-blanco, J.D., Ossorio, M., Bots, P. & Garcia-Ruiz, J.M. (2012). The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336(6077), 6972.Google Scholar
Wallace, A.F., Hedges, L.O., Fernandez-Martinez, A., Raiteri, P., Gale, J.D., Waychunas, G.A., Whitelam, S., Banfield, J.F. & de Yoreo, J.J. (2013). Microscopic evidence for liquid-liquid separation in supersaturated CaCO3 solutions. Science 341(6148), 885889.Google Scholar
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2(8), 532536.Google Scholar
Woehl, T.J., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2012). Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6(10), 85998610.Google Scholar
Wolf, S.E., Leiterer, J., Kappl, M., Emmerling, F. & Tremel, W. (2008). Early homogenous amorphous precursor stages of calcium carbonate and subsequent crystal growth in levitated droplets. J Am Chem Soc 130(37), 1234212347.Google Scholar
Xin, H.L. & Zheng, H. (2012). In situ observation of oscillatory growth of bismuth nanoparticles. Nano Lett 12, 14701474.Google Scholar
Xu, An-Wu, Antonietti, Markus, Yu, Shu-Hong, Cölfen, H. (2008). Polymer-mediated mineralization and self-similar mesoscale-organized calcium carbonate with unusual superstructures. Adv Mater 20(7), 1333.Google Scholar
Yadong, Y. & Alivisatos, P. (2005). Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437(7059), 664670.Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336, 6164.Google Scholar
Zhang, H.Z. & Banfield, J.F. (2012). Energy calculations predict nanoparticle attachment orientations and asymmetric crystal formation. J Phys Chem Lett 3(19), 28822886.Google Scholar
Zhang, H. & Banfield, J.F. (2013). Interatomic Coulombic interactions as the driving force for oriented attachment. Cryst Eng Comm, 16, 15681578.Google Scholar
Zhang, J., Huang, F. & Lin, Z. (2010). Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale 2(1), 1834.Google Scholar
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.Google Scholar
Supplementary material: File

Nielsen Supplementary Material

Supplementary Material

Download Nielsen Supplementary Material(File)
File 7 MB

Nielsen Supplementary Material

Movie 1

Download Nielsen Supplementary Material(Video)
Video 13 MB

Nielsen Supplementary Material

Movie 2

Download Nielsen Supplementary Material(Video)
Video 14 MB

Nielsen Supplementary Material

Movie 3

Download Nielsen Supplementary Material(Video)
Video 6 MB

Nielsen Supplementary Material

Movie 4

Download Nielsen Supplementary Material(Video)
Video 12 MB

Nielsen Supplementary Material

Movie 5

Download Nielsen Supplementary Material(Video)
Video 14 MB