Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T12:11:51.753Z Has data issue: false hasContentIssue false

Quantification of Sample Thickness and In-Concentration of InGaAs Quantum Wells by Transmission Measurements in a Scanning Electron Microscope

Published online by Cambridge University Press:  16 July 2010

T. Volkenandt*
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
E. Müller
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany Center for Functional Nanostructures (CFN), Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
D.Z. Hu
Affiliation:
Institut für Angewandte Physik and CFN, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
D.M. Schaadt
Affiliation:
Institut für Angewandte Physik and CFN, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
D. Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany Center for Functional Nanostructures (CFN), Karlsruher Institut für Technologie (KIT), 76128 Karlsruhe, Germany
*
Corresponding author. E-mail: tobias.volkenandt@kit.edu
Get access

Abstract

High-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) images of electron-transparent samples show dominant atomic number (Z-) contrast with a high lateral resolution. HAADF STEM at low electron energies <30 keV is applied in this work for quantitative composition analyses of InGaAs quantum wells. To determine the local composition, normalized experimental image intensities are compared with results of Monte Carlo simulations. For verification of the technique, InGaAs/GaAs quantum-well structures with known In concentration are used. Transmission electron microscopy samples with known thickness are prepared by the focused-ion-beam technique. The method can be extended to other material systems and is particularly promising for the analysis of materials that are sensitive toward knock-on damage.

Type
STEM Development and Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Crewe, A.V. (1984). An introduction to STEM. J Ultra Mol Struct R 88, 94104.CrossRefGoogle ScholarPubMed
Croitoru, M.D., van Dyck, D., Aert, S.W., Bals, S. & Verbeeck, J. (2006). An efficient way of including thermal diffuse scattering in simulation of scanning transmission electron microscopic images. Ultramicroscopy 53, 319324.Google Scholar
Harscher, A., Lichte, H. & Mayer, J. (1997). Interference experiments with energy filtered electrons. Ultramicroscopy 69, 201209.CrossRefGoogle Scholar
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93114.CrossRefGoogle Scholar
Heinrich, K. (1981). Electron Beam X-Ray Microanalysis. New York: Van Nostrand Reinhold Co.Google Scholar
Hillyard, S. & Silcox, J. (1993). Thickness effects in ADF STEM zone axis images. Ultramicroscopy 52, 325334.CrossRefGoogle Scholar
Howie, A. (1979). Electron microscope/image contrast and localized signal selection techniques. J Microsc 117, 1123.CrossRefGoogle Scholar
Joy, D.C. & Luo, S. (1989). An empirical stopping power relationship for low-energy electrons. Scanning 11, 176180.CrossRefGoogle Scholar
Klenov, D.O. & Stemmer, S. (2006). Contributions to the contrast in experimental high-angle annular dark-field images. Ultramicroscopy 106, 889901.CrossRefGoogle Scholar
Krzyzanek, V., Nüsse, H. & Reichelt, R. (2004). Quantitative microscopy with a high-resolution FESEM in the transmission mode. EMC 2004, Proceedings of the 13th European Microscopy Congress, 1: Instrumentation and Methodology, August 22–27, 2004, Antwerp, Belgium.Google Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101.CrossRefGoogle ScholarPubMed
LeBeau, J.M. & Stemmer, S. (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108, 16531658.CrossRefGoogle ScholarPubMed
Liu, J. & Cowley, J.M. (1991). Imaging with high-angle scattered electrons and secondary electrons in STEM. Ultramicroscopy 37, 5071.CrossRefGoogle Scholar
Merli, P.G., Corticelli, F. & Morandi, V. (2002). Images of dopant profiles in low-energy scanning transmission electron microscopy. Appl Phys Lett 81, 45354537.CrossRefGoogle Scholar
Merli, P.G., Morandi, V. & Corticelli, F. (2003). Backscattered electron imaging and scanning transmission electron microscopy imaging of multi-layers. Ultramicroscopy 94, 8998.CrossRefGoogle ScholarPubMed
Merli, P. & Morandi, V. (2005). Low-energy STEM of multilayers and dopant profiles. Microsc Microanal 11, 97104.CrossRefGoogle ScholarPubMed
Morandi, V., Merli, P.G. & Quaglino, D. (2007). Scanning electron microscopy of thinned specimens: From multilayers to biological samples. Appl Phys Lett 90, 163113.CrossRefGoogle Scholar
Nellist, P. & Pennycook, S. (1999). Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111124.CrossRefGoogle Scholar
Potapov, P., Lichte, H., Verbeeck, J. & van Dyck, D. (2006). Experiments on inelastic electron holography. Ultramicroscopy 106, 10121018.CrossRefGoogle ScholarPubMed
Potapov, P., Verbeeck, J., Schattschneider, P., Lichte, H. & van Dyck, D. (2007). Inelastic electron holography as a variant of the Feynman thought experiment. Ultramicroscopy 107, 559567.CrossRefGoogle ScholarPubMed
Reimer, L. (1998). Scanning Electron Microscopy, 2nd ed.Heidelberg, Germany: Springer.CrossRefGoogle Scholar
Ritchie, N.W.M. (2005). A new Monte Carlo application for complex sample geometries. Surf Interface Anal 37, 10061011.CrossRefGoogle Scholar
Rosenauer, A., Fischer, U., Gerthsen, D. & Förster, A. (1998). Composition evaluation by lattice fringe analysis. Ultramicroscopy 72, 121133.CrossRefGoogle Scholar
Rosenauer, A. & Schowalter, M. (2008). STEMSIM—A new software tool for simulation of STEM HAADF Z-contrast imaging. Microscopy of Semiconductor Materials: Proceedings of the 15th Conference, April 2–5, 2007, Cambridge, U.K., p. 169.Google Scholar
Treacy, M.M.J. & Gibson, J.M. (1993). Coherence and multiple scattering in “Z-contrast” images. Ultramicroscopy 52, 3153.CrossRefGoogle Scholar
Verbeeck, J., van Dyck, D., Lichte, H., Potapov, P. & Schattschneider, P. (2005). Plasmon holographic experiments: Theoretical framework. Ultramicroscopy 102, 239255.CrossRefGoogle ScholarPubMed
Wall, J., Langmore, J., Isaacson, M. & Crewe, A.V. (1974). Scanning transmission electron microscopy at high resolution. Pro Natl Acad Sci USA 71, 15.CrossRefGoogle ScholarPubMed
Walther, T. (2005). A new experimental procedure to quantify annular dark-field images in STEM. J Microsc 221, 137144.CrossRefGoogle Scholar
Wang, Z.L. & Cowley, J.M. (1989). Simulating high-angle annular dark-field STEM images including inelastic thermal diffuse scattering. Ultramicroscopy 31, 437454.CrossRefGoogle Scholar