Skip to main content Accessibility help
×
Home
Hostname: page-component-544b6db54f-6mft8 Total loading time: 0.258 Render date: 2021-10-16T13:20:52.239Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

A Small Spot, Inert Gas, Ion Milling Process as a Complementary Technique to Focused Ion Beam Specimen Preparation

Published online by Cambridge University Press:  19 June 2017

Paul E. Fischione*
Affiliation:
E.A. Fischione Instruments Inc., 9003 Corporate Circle, Export, PA 15632, USA
Robert E.A. Williams
Affiliation:
Center for the Accelerated Maturation of Materials, The Ohio State University, 1305 Kinnear Road, Columbus, OH 43212, USA
Arda Genç
Affiliation:
Center for the Accelerated Maturation of Materials, The Ohio State University, 1305 Kinnear Road, Columbus, OH 43212, USA
Hamish L. Fraser
Affiliation:
Center for the Accelerated Maturation of Materials, The Ohio State University, 1305 Kinnear Road, Columbus, OH 43212, USA
Rafal E. Dunin-Borkowski
Affiliation:
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
Martina Luysberg
Affiliation:
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
Cecile S. Bonifacio
Affiliation:
E.A. Fischione Instruments Inc., 9003 Corporate Circle, Export, PA 15632, USA
András Kovács
Affiliation:
Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425 Jülich, Germany
*
* Corresponding author. pe_fischione@fischione.com

Abstract

This paper reports on the substantial improvement of specimen quality by use of a low voltage (0.05 to ~1 keV), small diameter (~1 μm), argon ion beam following initial preparation using conventional broad-beam ion milling or focused ion beam. The specimens show significant reductions in the amorphous layer thickness and implanted artifacts. The targeted ion milling controls the specimen thickness according to the needs of advanced aberration-corrected and/or analytical transmission electron microscopy applications.

Type
Instrumentation and Software
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. & Klepeis, S.J. (2005). Practical aspects of FIB TEM specimen preparation. In Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice, Giannuzzi, L.A. & Stevie, F.A. (Eds.), pp. 173200. New York, NY: Springer.CrossRefGoogle Scholar
Bahnck, D. & Hull, R. (1990). Experimental measurement of transmission electron microscope specimen temperature during ion milling. MRS Online Proc Libr 199, 253.CrossRefGoogle Scholar
Barber, D.J. (1993). Radiation damage in ion-milled specimens: Characteristics, effects and methods of damage limitation. Ultramicroscopy 52(1), 101125.CrossRefGoogle Scholar
Barna, Á. (1991). Topographic kinetics and practice of low angle ion beam thinning. MRS Online Proc Libr 254, 322.CrossRefGoogle Scholar
Barna, Á., Pécz, B. & Menyhard, M. (1998). Amorphisation and surface morphology development at low-energy ion milling. Ultramicroscopy 70(3), 161171.CrossRefGoogle Scholar
Barna, Á., Pécz, B. & Menyhard, M. (1999). TEM sample preparation by ion milling/amorphization. Micron 30(3), 267276.CrossRefGoogle Scholar
Barnard, A.W., Hyun, J.K., Grazul, J.L. & Muller, D.A. (2006). Surface roughness instabilities in low-angle ion milling. Microsc Microanal 12(S02), 13181319.CrossRefGoogle Scholar
Basile, D.P., Boylan, R., Baker, B., Hayes, K. & Soza, D. (1991). Fibxtem—Focussed ion beam milling for TEM sample preparation. MRS Online Proc Libr 254, 2341.CrossRefGoogle Scholar
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-Ångström resolution using aberration corrected electron optics. Nature 418(6898), 617620.CrossRefGoogle ScholarPubMed
Cooper, D., Truche, R., Twitchett-Harrison, A., Dunin-Borkowski, R.E. & Midgley, P. (2009). Quantitative off-axis electron holography of GaAs p-n junctions prepared by focused ion beam milling. J Microsc 233(1), 102113.CrossRefGoogle ScholarPubMed
Das, A.K., Pampuch, C., Ney, A., Hesjedal, T., Däweritz, L., Koch, R. & Ploog, K.H. (2003). Ferromagnetism of MnAs studied by heteroepitaxial films on GaAs(001). Phys Rev Lett 91(8), 087203.CrossRefGoogle Scholar
Genç, A., Ohio State University & E.A. Fischione Instruments Inc (2007). Post-FIB TEM sample preparation using a low energy argon beam. Microsc Microanal 13(S02), 15201521.Google Scholar
Giannuzzi, L.A. (2006). Reducing FIB damage using low energy ions. Microsc Microanal 12(S02), 12601261.CrossRefGoogle Scholar
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197204.CrossRefGoogle Scholar
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63(2), 93114.CrossRefGoogle Scholar
Hauser, A.J., Williams, R.E., Ricciardo, R.A., Genç, A., Dixit, M., Lucy, J.M., Woodward, P.M., Fraser, H.L. & Yang, F. (2011). Unlocking the potential of half-metallic Sr2FeMoO6 films through controlled stoichiometry and double-perovskite ordering. Phys Rev B 83(1), 014407.CrossRefGoogle Scholar
Huh, Y., Hong, K. & Shin, K. (2013). Amorphization induced by focused ion beam milling in metallic and electronic materials. Microsc Microanal 19(S5), 3337.CrossRefGoogle ScholarPubMed
Jia, C.L., Houben, L., Thust, A. & Barthel, J. (2010). On the benefit of the negative-spherical-aberration imaging technique for quantitative HRTEM. Ultramicroscopy 110(5), 500505.CrossRefGoogle Scholar
Jia, C.L., Mi, S.B., Barthel, J., Wang, D.W., Dunin-Borkowski, R.E., Urban, K.W. & Thust, A. (2014). Determination of the 3D shape of a nanoscale crystal with atomic resolution from a single image. Nat Mater 13(11), 10441049.CrossRefGoogle ScholarPubMed
Kamino, T., Yaguchi, T., Hashimoto, T., Ohnishi, T. & Umemura, K. (2005). A FIB micro-sampling technique and a site specific TEM specimen preparation method. In Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques, and Practice, Giannuzzi, L.A. & Stevie, F.A. (Eds.), pp. 229–245. New York, NY: Springer Science+Business Media, Inc.Google Scholar
Kato, N.I. (2004). Reducing focused ion beam damage to transmission electron microscopy samples. J Electron Microsc 53(5), 451458.CrossRefGoogle ScholarPubMed
Kirk, E.C., Williams, D.A. & Ahmed, H. (1989). Cross-sectional transmission electron microscopy of precisely selected regions from semiconductor devices. Inst Phys Conf Ser 100, 501506.Google Scholar
Kovács, A., Ney, A., Duchamp, M., Ney, V., Boothroyd, C.B., Galindo, P.L., Kaspar, T.C., Chambers, S.A. & Dunin-Borkowski, R.E. (2013). Defects in paramagnetic Co-doped ZnO films studied by transmission electron microscopy. J Appl Phys 114, 243503.CrossRefGoogle Scholar
LeBeau, J.M., D’Alfonso, A.J., Findlay, S.D., Stemmer, S. & Allen, L.J. (2009). Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy images. Phys Rev B 80(17), 174106.CrossRefGoogle Scholar
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100(20), 206101.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010 a). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.CrossRefGoogle ScholarPubMed
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010 b). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.CrossRefGoogle ScholarPubMed
Li, L. & Yang, J.C. (2002). Oxide structures formed on silver single crystals due to hyperthermal atomic oxygen exposure. MRS Online Proc Libr 751, Z3.37.CrossRefGoogle Scholar
Lotnyk, A., Poppitz, D., Ross, U., Gerlach, J., Frost, F., Bernütz, S., Thelander, E. & Rauschenbach, B. (2015). Focused high- and low-energy ion milling for TEM specimen preparation. Microelectron Reliab 55(9–10), 21192125.CrossRefGoogle Scholar
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bull 32(5), 400407.CrossRefGoogle Scholar
McCaffrey, J.P., Phaneuf, M.W. & Madsen, L.D. (2001). Surface damage formation during ion-beam thinning of samples for transmission electron microscopy. Ultramicroscopy 87, 97104.CrossRefGoogle ScholarPubMed
Mehrtens, T., Bley, S., Venkata Satyam, P. & Rosenauer, A. (2012). Optimization of the preparation of GaN-based specimens with low-energy ion milling for (S)TEM. Micron 43(8), 902909.CrossRefGoogle ScholarPubMed
Miyajima, N., Holzapfel, C., Asahara, Y., Dubrovinsky, L., Frost, D., Rubie, D., Drechsler, M., Niwa, K., Ichihara, M. & Yagi, T. (2010). Combining FIB milling and conventional Argon ion milling techniques to prepare high-quality site-specific TEM samples for quantitative EELS analysis of oxygen in molten iron. J Microsc 238(3), 200209.CrossRefGoogle ScholarPubMed
Mkhoyan, K., Babinec, T., Maccagnano, S., Kirkland, E. & Silcox, J. (2007). Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107(4–5), 345355.CrossRefGoogle ScholarPubMed
MoberlyChan, W.J., Adams, D.P., Aziz, M.J., Hobler, G. & Schenkel, T. (2007). Fundamentals of focused ion beam nanostructural processing: Below, at, and above the surface. MRS Bull 32(5), 424432.CrossRefGoogle Scholar
Phillips, P.J., Brandes, M.C., Mills, M.J. & De Graef, M. (2011). Diffraction contrast STEM of dislocations: Imaging and simulations. Ultramicroscopy 111(9–10), 14831487.CrossRefGoogle ScholarPubMed
Rafferty, B., Nellist, D. & Pennycook, J. (2001). On the origin of transverse inchoherence in Z-contrast STEM. J Electron Microsc 50(3), 227233.Google ScholarPubMed
Schaffer, M., Schaffer, B. & Ramasse, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.CrossRefGoogle ScholarPubMed
Scheu, C., Gao, M., Van Benthem, K., Tsukimoto, S., Schmidt, S., Sigle, W., Richter, G. & Thomas, J. (2003). Advances in EELS spectroscopy by using new detector and new specimen preparation technologies. J Microsc 210(1), 1624.CrossRefGoogle ScholarPubMed
Unocic, K.A., Mills, M.J. & Daehn, G.S. (2010). Effect of gallium focused ion beam milling on preparation of aluminium thin foils. J Microsc 240(3), 227238.CrossRefGoogle ScholarPubMed
Utke, I., Hoffmann, P. & Melngailis, J. (2008). Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26(4), 11971276.CrossRefGoogle Scholar
Volkert, C.A. & Minor, A.M. (2007). Focused ion beam microscopy and micromachining. MRS Bull 32(5), 389399.CrossRefGoogle Scholar
Young, R.J., Kirk, E.C., Williams, D.A. & Ahmed, H. (1990). Fabrication of planar and cross-sectional TEM specimens using a focused ion beam. MRS Online Proc Libr 199, 205216.CrossRefGoogle Scholar
9
Cited by

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A Small Spot, Inert Gas, Ion Milling Process as a Complementary Technique to Focused Ion Beam Specimen Preparation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A Small Spot, Inert Gas, Ion Milling Process as a Complementary Technique to Focused Ion Beam Specimen Preparation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A Small Spot, Inert Gas, Ion Milling Process as a Complementary Technique to Focused Ion Beam Specimen Preparation
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *