Skip to main content Accessibility help
×
Home
Hostname: page-component-5d6d958fb5-z6b88 Total loading time: 0.505 Render date: 2022-11-26T08:25:13.355Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": false, "useSa": true } hasContentIssue true

Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis

Published online by Cambridge University Press:  29 September 2016

Manuel Toledano*
Affiliation:
Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Fátima S. Aguilera
Affiliation:
Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Modesto T. López-López
Affiliation:
Applied Physics Department, Faculty of Science, University of Granada, Fuente Nueva s/n, 18071 Granada, Spain
Estrella Osorio
Affiliation:
Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Manuel Toledano-Osorio
Affiliation:
Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
Raquel Osorio
Affiliation:
Dental Materials Section, Faculty of Dentistry, University of Granada, Colegio Máximo de Cartuja s/n, 18071 Granada, Spain
*
*Corresponding author.toledano@ugr.es

Abstract

The aim of this research was to assess the ability of amalgam restorations to induce amorphous mineral precipitation at the caries-affected dentin substrate. Sound and caries-affected dentin surfaces were subjected to both Zn-free and Zn-containing dental amalgam restorations. Specimens were submitted to thermocycling (100,000 cycles/5°C–55°C, 3 months). Dentin surfaces were studied by atomic force microscopy (nanoroughness), X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive analysis, for physical and morphological surface characterization. Zn-containing amalgam placement reduced crystallinity, crystallite size, and grain size of calcium phosphate crystallites at the dentin surface. Both microstrain and nanoroughness were augmented in caries-affected dentin restored with Zn-containing amalgams. Caries-affected dentin showed the shortest mineral crystallites (11.04 nm), when Zn-containing amalgams were used for restorations, probably leading to a decrease of mechanical properties which might favor crack propagation and deformation. Sound dentin restored with Zn-free amalgams exhibited a substantial increase in length of grain particles (12.44 nm) embedded into dentin crystallites. Zn-containing amalgam placement creates dentin mineralization and the resultant mineral was amorphous in nature. Amorphous calcium phosphate provides a local ion-rich environment, which is considered favorable for in situ generation of prenucleation clusters, promotong further dentin remineralization.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R., Nieto, A., Chen, H., Mora, M. & Agarwal, A. (2013). Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. ACS Appl Mater Interfaces 5, 1205212057.CrossRefGoogle ScholarPubMed
Barrére, F., Layrolle, P., van Blitterswijk, C.A. & de Groot, K. (1999). Biomimetic calcium phosphate coatings on Ti6AI4V: A crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3− . Bone 25, 107S111S.CrossRefGoogle ScholarPubMed
Bertassoni, L.E., Habelitz, S., Kinney, J.H., Marshall, S.J. & Marshall, G.W. Jr. (2009). Biomechanical perspective on the remineralization of dentin. Caries Res 43, 7077.CrossRefGoogle ScholarPubMed
Bigi, A., Boanini, E., Gazzano, M., Kojdecki, M.A. & Rubini, K. (2004). Microstructural investigation of HAp–polyelectrolyte composites. J Mater Chem 14, 274279.CrossRefGoogle Scholar
Cochrane, N.J., Cai, F., Huq, N.L., Burrow, M.F. & Reynolds, E.C. (2010). New approaches to enhanced remineralization of tooth enamel. J Dent Res 89, 11871197.CrossRefGoogle ScholarPubMed
Fujisaki, K., Todoh, M., Niida, A., Shibuya, R., Kitami, S. & Tadano, S. (2012). Orientation and deformation of mineral crystals in tooth surfaces. J Mech Behav Biomed Mater 10, 176182.CrossRefGoogle ScholarPubMed
Fusayama, T. (1993). New Concepts in the Pathology and Treatment of Dental Caries. St. Louis, MO: Ishiyaku EuroAmerica Inc. pp. 1–21.Google Scholar
Gawda, H., Sekowski, L. & Trebacz, H. (2004). In vitro examination of human teeth using ultrasound and X-ray diffraction. Acta Bioeng Biomech 6, 4150.Google Scholar
Goel, V.K., Khera, S.C., Ralston, J.L. & Chang, K.H. (1991). Stresses at the dentinoenamel junction of human teeth—A finite element investigation. J Prosthet Dent 66, 451459.CrossRefGoogle ScholarPubMed
Habelitz, S., Marshall, S.J., Marshall, G.W. & Balooch, M. (2001). The functional width of the dentino-enamel junction determined by AFM-based nanoscratching. J Struct Biol 135, 294301.CrossRefGoogle ScholarPubMed
Hanschin, R.G. & Stern, W.B. (1995). X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 16, 355S363S.CrossRefGoogle Scholar
Hoppe, A., Güldal, N.S. & Boccaccini, A.R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 27572774.CrossRefGoogle ScholarPubMed
Karan, K., Yao, X., Xu, C. & Wang, Y. (2009). Chemical profile of the dentin substrate in non-carious cervical lesions. Dent Mater 25, 12051212.CrossRefGoogle ScholarPubMed
Kay, M.I., Young, R.A. & Posner, A.S. (1964). Crystal structure of HAp. Nature 204, 10501052.CrossRefGoogle Scholar
Kinney, J.H., Oliveira, J., Haupt, D.L., Marshall, G.W. & Marshall, S.J. (2001). The spatial arrangement of tubules in human dentin. J Mater Sci Mater Med 12, 743751.CrossRefGoogle ScholarPubMed
Klug, H.P. & Alexander, L.E. (1974). X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley.Google Scholar
LeGeros, R.Z. (1990). Chemical and crystallographic events in the caries process. J Dent Res 69(Spec No), 567574. discussion 634–636.CrossRefGoogle ScholarPubMed
Lewis, D. & Northwood, D.O. (1968). X-ray diffraction measurement of microstrains. Strain 4, 1923.CrossRefGoogle Scholar
Liss, K.D., Bartels, A., Schreyer, A. & Clemens, H. (2003). High energy X-rays: A tool for advanced bulk investigations in materials science and physics. Texture Microstruct 35, 219252.CrossRefGoogle Scholar
Liu, Y., Tjaderhane, L., Breschi, L., Mazzoni, A., Li, N., Mao, J., Pashley, D.H. & Tay, F.R. (2011). Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90, 953968.CrossRefGoogle ScholarPubMed
Low, I.M. (2004). Depth-profiling of crystal structure, texture, and microhardness in a functionally graded tooth enamel. J Am Ceram Soc 87, 21252131.CrossRefGoogle Scholar
Ma, X.N., Zhou, J., Ge, B.F., Zhen, P., Ma, H.P., Shi, W.G., Cheng, K., Xian, C. & Chen, K.M. (2013). Icariin induces osteoblast differentiation and mineralization without dexamethasone in vitro. Planta Med 79, 15011508.Google ScholarPubMed
Marshall, G.W., Marshall, S.J., Kinney, J.H. & Balooch, M. (1997). The dentin substrate: Structure and properties related to bonding. J Dent 25, 441458.CrossRefGoogle ScholarPubMed
Mazzitelli, C., Monticelli, F., Toledano, M., Ferrari, M. & Osorio, R. (2012). Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts. Clin Oral Investig 16, 909915.CrossRefGoogle ScholarPubMed
Moraschini, V., Fai, C.K., Alto, R.M. & dos Santos, G.O. (2015). Amalgam and resin composite longevity of posterior restorations: A systematic review and meta-analysis. J Dent 43, 10431050.CrossRefGoogle ScholarPubMed
Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J.A. & Rehman, I. (2008). Effects of incorporation of HAp and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater 4, 432440.CrossRefGoogle Scholar
Okazaki, M. & LeGeros, R.Z. (1992). Crystallographic and chemical properties of Mg-containing apatites before and after suspension in solutions. Magnes Res 5, 103108.Google ScholarPubMed
Osorio, R., Yamauti, M., Osorio, E., Román, J.S. & Toledano, M. (2011). Zinc-doped dentin adhesive for collagen protection at the hybrid layer: Zinc-doped dental adhesive. Eur J Oral Sci 119, 401410.CrossRefGoogle Scholar
Pasteris, J.D., Wopenka, B., Freeman, J.J., Rogers, K., Valsami-Jones, E., van der Houwen, J.A. & Silva, M.J. (2004). Lack of OH in nanocrystalline apatite as a function of degree of atomic order: Implications for bone and biomaterials. Biomaterials 25, 229238.CrossRefGoogle Scholar
Perales, F., De las Heras, C. & Agulló-Rueda, F. (2008). Structural properties of MgP2 and ZnS in thin film and in multilayer optical coatings. J Phys D Appl Phys 41, 225405.CrossRefGoogle Scholar
Qvist, V., Qvist, J. & Mjör, I.A. (1990). Placement and longevity of tooth-colored restorations in Denmark. Acta Odontol Scand 48, 305311.CrossRefGoogle ScholarPubMed
Rezwan, K., Chen, Q.Z., Blaker, J.J. & Boccaccini, A.R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 34133431.CrossRefGoogle ScholarPubMed
Sauro, S., Osorio, R., Osorio, E., Watson, T.F. & Toledano, M. (2013). Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. J Biomater Sci Polym Ed 24, 940956.CrossRefGoogle ScholarPubMed
Schwartz, A.G., Pasteris, J.D., Genin, G.M., Daulton, T.L. & Thomopoulos, S. (2012). Mineral distributions at the developing tendon enthesis. PLoS ONE 7, e48630.CrossRefGoogle ScholarPubMed
Sjögren, P. & Halling, A. (2002). Survival time of class II molar restorations in relation to patient and dental health insurance costs for treatment. Swed Dent J 26, 5966.Google Scholar
Ten Cate, J.M. & Featherstone, J.D.B. (1996). Physicochemical aspects of fluoride-enamel interactions. In Fluoride in Dentistry, Fejerskov, O., Ekstrand, J. & Burt, B.A. (Eds.), pp. 187213. Copenhagen: Munksgaard Textbook.Google ScholarPubMed
Toledano, M., Aguilera, F.S., Osorio, E., Cabello, I., Toledano-Osorio, M. & Osorio, R. (2015 a). Mechanical and chemical characterisation of demineralized human dentine after amalgam restorations. J Mech Behav Biomed Mater 47, 6576.CrossRefGoogle Scholar
Toledano, M., Aguilera, F.S., Osorio, E., López-López, M.T., Cabello, I., Toledano-Osorio, M. & Osorio, R. (2015 b). On modeling and nanoanalysis of caries-affected dentin surfaces restored with Zn-containing amalgam and in vitro oral function. Biointerphases 10, 041004.CrossRefGoogle ScholarPubMed
Toledano, M., Aguilera, F.S., Osorio, E., López-López, M.T., Cabello, I., Toledano-Osorio, M. & Osorio, R. (2016). Submicron-to-nanoscale structure characterization and organization of crystals in dentin bioapatites. RSC Adv 6, 4526545278.CrossRefGoogle Scholar
Toledano, M., Osorio, E., Aguilera, F.S., Toledano-Osorio, M., López-López, M.T. & Osorio, R. (2015 c). Stored potential energy and viscoelastic properties alterations after restoring dentin with Zn-containing materials. J Mech Behav Biomed Mater (in press).Google Scholar
Toledano, M., Sauro, S., Cabello, I., Watson, T. & Osorio, R. (2013). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29, e142e152.CrossRefGoogle ScholarPubMed
Toledano, M., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2012). A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J Dent 40, 756765.CrossRefGoogle ScholarPubMed
Vaseenon, S. (2011). Relationship between caries-affected dentin mineral density and microtensile bond strength. Master’s Thesis. University of Iowa. Iowa City, Iowa. USA.Google Scholar
Wagner, C.N.J. (1966). Analysis of the Broadening and Changes in Position of Peaks in an X-Ray Powder Pattern. In Local Atomic Arrangements Studies by X-ray Diffraction (Metallurgical Society Conferences 36 Cohen, J.B. & Hilliard, J.E. (Eds.), pp. 219268. New York: Gordon and Breach Science Publishers.Google Scholar
Xue, J., Zavgorodniy, A.V., Kennedy, B.J., Swain, M.V. & Li, W. (2013). X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel. J Microsc 251, 144153.CrossRefGoogle ScholarPubMed
Xue, J., Zhang, L., Zou, L., Liao, Y., Li, J., Xiao, L. & Li, W. (2008). High-resolution X-ray microdiffraction analysis of natural teeth. J Synchrotron Radiat 15, 235238.CrossRefGoogle ScholarPubMed
Zhang, Z., Zhou, F. & Lavernia, E.J. (2003). On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction. Metall Mater Trans A 34A, 13491355.CrossRefGoogle Scholar
Zurick, K.M., Qin, C. & Bernards, M.T. (2013). Mineralization induction effects of osteopontin, bone sialoprotein, and dentin phosphoprotein on a biomimetic collagen substrate. J Biomed Mater Res A 101A, 15711581.CrossRefGoogle Scholar
3
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *