Skip to main content
×
Home
    • Aa
    • Aa

Advanced Electron Microscopy Characterization of Nanostructured Heterogeneous Catalysts

  • Jingyue Liu (a1)
Abstract

Heterogeneous catalysis is one of the oldest nanosciences. Although model catalysts can be designed, synthesized, and, to a certain degree, characterized, industrial heterogeneous catalysts are often chemically and physically complex systems that have been developed through many years of catalytic art, technology, and science. The preparation of commercial catalysts is generally not well controlled and is often based on accumulated experiences. Catalyst characterization is thus critical to developing new catalysts with better activity, selectivity, and/or stability. Advanced electron microscopy, among many characterization techniques, can provide useful information for the fundamental understanding of heterogeneous catalysis and for guiding the development of industrial catalysts. In this article, we discuss the recent developments in applying advanced electron microscopy techniques to characterizing model and industrial heterogeneous catalysts. The importance of understanding the catalyst nanostructure and the challenges and opportunities of advanced electron microscopy in developing nanostructured catalysts are also discussed.

Copyright
Corresponding author
E-mail: jingyue.liu@monsanto.com
References
Hide All

REFERENCES

Ajayan, P.M. & Marks, L.D. (1988). Quasimelting and phases of small particles. Phys Rev Lett 60, 585587.
Allpress, J.G. & Sanders, J.V. (1967). Structure and orientation of crystals in deposits of metals on mica. Surf Sci 7, 478483.
Barry, J.C., Bursill, L.A., & Sanders, A.V. (1985). Electron microscope images of icosahedral and cuboctahedral (fcc. packing) clusters of atoms. Aust J Phys 38, 437448.
Batson, P.E. (1993). Simultaneous STEM imaging and electron-energy-loss spectroscopy with atomic column sensitivity. Nature 366, 727728.
Batson, P.E., Dellby, N., & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.
Bednarova, L., Lyman, C.E., Rytter, E., & Holmen, A. (2002). Effect of support on the size and composition of highly dispersed Pt-Sn particles. J Catal 211, 335346.
Bernal, S., Botana, F.J., Calvino, J.J., Lopez-Cartes, C., Perez-Omil, J.A., & Rodriguez-Izquierdo, J.M. (1998). The interpretation of HREM images of supported metal catalysts using image simulation: Profile view images. Ultramicroscopy 72, 135164.
Bernal, S., Calvino, J.J., Cauqui, M.A., Cifredo, G.A., Jobacho, A., & Rodriguez-Izquierdo, J.M. (1993). Metal-support interaction phenomena in rhodium/ceria and rhodium/titania catalysts: Comparative study by high-resolution transmission electron spectroscopy. Appl Catal A: General 99, 18.
Bernal, S., Calvino, J.J., Cauqui, M.A., Gatica, J.M., Larese, C., Lopez-Cartes, C., Perez-Omil, J.A., & Pintado, J.M. (1999). Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal Today 50, 175206.
Boyes, E.D. (1998). High-resolution and low-voltage SEM imaging and chemical microanalysis. Adv Mater 10, 12771280.
Browning, N.D., Arslan, I., Ito, Y., James, E M., Klie, R.F., Moeck, P., Topuria, T., & Xin, Y. (2001). Application of atomic scale STEM techniques to the study of interfaces and defects in materials. J Electron Microsc 50, 205218.
Browning, N.D., Wallis, D.J., Nellist, P.D., & Pennycook, S.J. (1997). EELS in the STEM: Determination of materials properties on the atomic scale. Micron 28, 333348.
Cowley, J.M. (1999). Electron nanodiffraction. Microsc Res Tech 46, 7597.
Crew, A.V., Wall, J., & Langmore, J. (1970). Visibility of a single atom. Science 168, 13381340.
Crozier, P.A., Tsen, S.-C.Y., Lopes-Cartes, C., Liu, J., & Calvino, J.J. (1999). Factors affecting the accuracy of lattice spacing determination by HREM in nanometre-sized Pt particles. J Electron Microsc 48, 10151024.
Darji, R. & Howie, A. (1997). Scattering corrections in small particle imaging. Micron 28, 95100.
Datye, A.K. & Smith, D.J. (1992). The study of heterogeneous catalysts by high-resolution electron microscopy. Catal Rev Sci Eng 34, 129178.
Ertl, G. (2002). Heterogeneous catalysis on atomic scale. J Mol Catal A: Chemical 3443, 112.
Gai, P.L. (1998). Direct probing of gas molecule-solid catalyst interactions on the atomic scale. Adv Mater 10, 12591263.
Gai, P.L. (2002). Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Top Catal 21, 161173.
Gai, P.L., Goringe, M.J., & Barry, J.C. (1986). HREM image contrast from supported small metal particles. J Microsc 142, 924.
Gai, P.L., Kourtakis, K., & Ziemecki, S. (2000). In situ real-time environmental high resolution electron microscopy of nanometer size novel xerogel catalysts for hydrogenation reactions in nylon 6,6. Microsc Microanal 6, 335342.
GaiBoyes, P.L. (1992). Defects in oxide catalysts-fundamental-studies of catalysis in action. Catal Rev Sci Eng 34, 154.
Garzon, I.L., Michaelian, K., Beltran, M.R., Posada-Amarillas, A., Ordejon, P., Artacho, E., Sanches-Portal, D., & Soler, J.M. (1998). Lowest energy structures of gold nanoclusters. Phys Rev Lett 81, 16001603.
Hansen, T.W., Wagner, J.B., Hansen, P.L., Dahl, S., Topsoe, H., & Jacobsen, C.J.H. (2001). Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst. Science 294, 15081510.
Hansen, P.L., Wagner, J.B., Helveg, S., Rostrup-Nielsen, J.R., Clausen, B.S., & Topsoe, H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.
Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catal Today 36, 153166.
Heinemann, K. & Soria, F. (1986). On the detection and size classification of nanometer-size metal particles on amorphous substrates. Ultramicroscopy 20, 114.
Ino, S. (1966). Epitaxial growth of metals on rock salt faces cleaved in vacuum. II. Orientation and structure of gold particles formed in ultra-high vacuum. J Phys Soc Jpn 21, 346362.
Jose-Yacaman, M. & Avalos-Borja, M. (1992). Electron microscopy of metallic nano particles using high- and medium-resolution techniques. Catal Rev Sci Eng 34, 55127.
Jose-Yacamann, M., Diaz, G., & Gomez, A. (1995). Electron microscopy of catalysts; the present, the future and the hopes. Catal Today 32, 161199.
Jose-Yacaman, M., Marin-Almazo, M., & Ascencio, J.A. (2001). High resolution TEM studies on palladium nanoparticles. J Mol Catal A: Chemical 173, 6174.
Joy, D.C. & Joy, C.S. (1996). Low voltage scanning electron microscopy. Micron 27, 247263.
Joy, D.C. & Pawley, J.B. (1992). High-resolution scanning electron microscopy. Ultramicroscopy 47, 80100.
Klie, R.F., Disko, M.M., & Browning, N.D. (2002). Atomic scale observations of the chemistry at the metal-oxide interface in heterogeneous catalysts. J Catal 205, 16.
Liu, J. (1998). Low voltage high-resolution secondary electron microscopy of industrial supported catalysts. In Proceedings of the 14th ICEM: Electron Microscopy, Benavides, H.A.C. & Yacaman, M.J. (Eds). Vol. 2, pp. 399400. Bristol: Institute of Physics Publishing.
Liu, J. (2000a). Contrast of highly dispersed metal nanoparticles in high-resolution secondary electron and backscattered electron images of supported metal catalysts. Microsc Microanal 6, 388399.
Liu, J. (2000b). High-resolution and low-voltage FE-SEM imaging and microanalysis in materials characterization. Mater Charact 44, 353363.
Liu, J. (2002). HAADF imaging of metal nanoclusters and nanoparticles: Challenges and opportunities. In Proceedings of the 15th International Congress on Electron Microscopy, pp. 499500.
Liu, J. & Cowley, J.M. (1987). High-resolution scanning electron microscopy of surface reactions. Ultramicroscopy 23, 463472.
Liu, J. & Cowley, J.M. (1990). High-angle ADF and high-resolution SE imaging of supported catalyst clusters. Ultramicroscopy 34, 119128.
Liu, J. & Nag, N.K. (2003). Atomic resolution electron spectroscopy investigation of supported catalysts: Pd/TiO2 and Pd-Ni/TiO2. In Proceedings of the 18th North American Catalysis Society Meeting, p. 225.
Liu, J., Ornberg, R.L., & Ebner, J.R. (1997). Studies of supported metal catalysts using low voltage biased secondary electron imaging in a JSM-6320F FE-SEM. Microsc Microanal 3 (Suppl. 2), 11231224.
Liu, J. & Spinnler, G.E. (1994). Observation of the evolution of 55-atom icosahedral Ag clusters by coherent electron nanodiffraction in a UHV STEM. In Proceedings of the Microscopy Society of America, Bailey, G.W. & Garratt-Reed, A.J. (Eds.), pp. 788789. San Francisco: San Francisco Press, Inc.
Logan, A.D., Braunschweig, E., Datye, A.K., & Smith, D.J. (1988). Direct observation of the surfaces of small metal crystallites: Rhodium supported on titania. Lanngmuir 4, 827830.
Logan, A.D., Braunschweig, E., Datye, A.K., & Smith, D.J. (1989). The oxidation of small rhodium metal particles. Ultramicroscopy 31, 132137.
Lyman, C.E. (1986). Digital X-ray imaging of small particles. Ultramicroscopy 20, 11924.
Lyman, C.E., Goldstein, J.I., Williams, D.B., Ackland, D.W., Von Harrach, S., Nicholls, A.W., & Statham, P.J. (1994). High-performance X-ray-detection in a new analytical electron-microscope. J Microsc 176, 8598.
Lyman, C.E., Lakis, R.E., & Stenger, H.G. Jr. (1995). X-ray emission spectrometry of phase separation in Pt-Rh nanoparticles for nitric oxide reduction. Ultramicroscopy 58, 2534.
Lyman, C.E., Lakis, Rollin E., Stenger, H.G., Jr., Totdal, B., & Prestvik, R. (2000). Analysis of alloy nanoparticles. Mikrochim Acta 132, 301308.
Malm, J.O. & O'Keefe, M.A. (1997). Deceptive “lattice spacings” in high-resolution micrographs of metal nanoparticles. Ultramicroscopy 68, 1323.
Marks, L.D. (1994). Experimental studies of small particle structures. Rep Prog Phys 57, 603649.
Marks, L.D. & Smith, D.J. (1981). High-resolution studies of small particles of gold and silver. I. Multiply-twinned particles. J Cryst Growth 54, 425432.
Midgley, P.A., Weyland, M., Thomas, J.M., Gai, P.L., & Boyes, E.D. (2002). Probing the spatial distribution and morphology of supported nanoparticles using Rutherford-scattered electron imaging. Angew Chem Int Ed 41, 38043807.
Muller, D.A. & Mills, M.J. (1999). Electron microscopy: Probing the atomic structure and chemistry of grain boundaries, interfaces, and defects. Mater Sci Eng A 260, 1228.
Nellist, P.D. & Pennycook, S.J. (1996). Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413415.
Oleshko, V.P., Crozier, P.A., Cantrell, R.D., & Westwood, A.D. (2001). In situ real-time environmental TEM of gas phase Ziegler-Natta catalytic polymerization of propylene. J Electron Microsc 51, S27S39.
Silcox, J. (1998). Core-loss EELS. Curr Opin Solid State Mater Sci 3, 336342.
Smith, D.J. (1997). The realization of atomic resolution with the electron microscope. Rep Prog Phys 60, 15131580.
Smith, D.J., Yao, M.H., Allard, L.F., & Datye, A.K. (1995). High-resolution scanning electron microscopy for the characterization of supported catalysts. Catal Lett 31, 5764.
Strongin, D.R., Bare, S.R., & Somorjai, G.A. (1987a). The importance of C7 sites and surface roughness in the ammonia synthesis reaction over iron. J Catal 103, 213215.
Strongin, D.R., Bare, S.R., & Somorjai, G.A. (1987b). The effects of aluminum oxide in restructuring iron single crystal surfaces for ammonia synthesis. J Catal 103, 289301.
Sun, K., Liu, J., & Browning, N.D. (2002a). Correlated atomic resolution microscopy and spectroscopy studies of Sn(Sb)O2 nanophase catalysts. J Catal 205, 266277.
Sun, K., Liu, J., Nag, N.K., & Browning, N.D. (2002b). Studying the metal-support interaction in Pd/γ-Al2O3 catalysts by atomic-resolution electron energy-loss spectroscopy. Catal Lett 84, 193199.
Sun, K., Liu, J., Nag, N.K., & Browning, N.D. (2002c). Atomic scale characterization of supported Pd-Cu/γ-Al2O3 bimetallic catalysts. J Phys Chem B 106, 1223912246.
Tanaka, N., Kimita, H., & Kizuka, T. (1996). Time-resolved high-resolution electron microscopy of surface-diffusion of tungsten atoms on MgO(001) surfaces. J Electron Microsc 45, 113118.
Tehuacanero, S., Herrera, R., Avalos, M., & Jose-Yacaman, M. (1992). High resolution TEM studies of gold and palladium nano-particles. Acta Metall Mater 40, 16631674.
Thomas, J.M., Terasaki, O., Gai, P.L., Zhou, W.Z., & Gonzalez-Calbet, J. (2001). Structural elucidation of microporous and mesoporous catalysts and molecular sieves by high-resolution electron microscopy. Acc Chem Res 34, 583594.
Treacy, M.M.J. & Rice, S.B. (1989). Catalyst particle sizes from Rutherford scattered intensities. J Microscopy 156, 211234.
Tsen, S.C.Y., Crozier, P.A., & Liu, J. (2003). Lattice measurement and alloy compositions in metal and bimetallic nanoparticles. Ultramicroscopy 98, 6372.
Williams, D.B. & Carter, C.B. (1996). Transmission Electron Microscopy. New York: Plenum Press.
Yao, M.H. & Smith, D.J. (1994). HREM image simulations for small-particle catalysts on crystalline supports. J Microsc 175, 252265.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 55 *
Loading metrics...

Abstract views

Total abstract views: 173 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th October 2017. This data will be updated every 24 hours.