Skip to main content
    • Aa
    • Aa

Analysis of Orientations of Collagen Fibers by Novel Fiber-Tracking Software

  • Jun Wu (a1), Bartłomiej Rajwa (a2) (a3), David L. Filmer (a1), Christoph M. Hoffmann (a4), Bo Yuan (a4), Ching-Shoei Chiang (a4), Jennie Sturgis (a2) and J. Paul Robinson (a2) (a5)...

Recent evidence supports the notion that biological functions of extracellular matrix (ECM) are highly correlated to not only its composition but also its structure. This article integrates confocal microscopy imaging and image-processing techniques to analyze the microstructural properties of ECM. This report describes a two- and three-dimensional fiber middle-line tracing algorithm that may be used to quantify collagen fibril organization. We utilized computer simulation and statistical analysis to validate the developed algorithm. These algorithms were applied to confocal images of collagen gels made with reconstituted bovine collagen type I, to demonstrate the computation of orientations of individual fibers.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

Aumailley, M. & Gayraud, B. (1998). Structure and biological activity of the extracellular matrix. J Mol Med76, 253265.

Birk, D.E., Nurminskaya, M.V., & Zycband, E.I. (1995). Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dynam202, 229243.

Birk, D.E., Zycband, E.I., Woodruff, S., Winkelmann, D.A., & Trelstad, R.L. (1997). Collagen fibrillogenesis in situ: Fibril segments become long fibrils as the developing tendon matures. Dev Dynam208, 291298.

Bissell, M.J., Hall, H.G., & Parry, G. (1982). How does the extracellular matrix direct gene expression?J Theor Biol99, 3168.

Brightman, A.O., Rajwa, B.P., Sturgis, J.E., McCallister, M.E., Robinson, J.P., & Voytik-Harbin, S.L. (2000). Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro. Biopolymers54, 222234.

Chen, C.S., Mrksich, M., Huang, S., Whitesides, G.M., & Ingber, D.E. (1997). Geometric control of cell life and death. Science276, 14251428.

Choquet, D., Felsenfeld, D.P., & Sheetz, M.P. (1997). Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell88, 3948.

Contard, P., Jacobs, L., Perlish, J.S., & Fleischmajer, R. (1993). Collagen fibrillogenesis in a three-dimensional fibroblast cell culture system. Cell Tissue Res273, 571575.

Curtis, A.S. & Wilkinson, C.D. (1998). Reactions of cells to topography. J Biomat Sci—Polym E9, 13131329.

Dickinson, R.B., Guido, S., & Tranquillo, R.T. (1994). Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann Biomed Eng22, 342356.

Friedl, P. & Brocker, E.B. (2000). The biology of cell locomotion within three-dimensional extracellular matrix. Cell Mol Life Sci57, 4164.

Kadler, K.E., Holmes, D.F., Trotter, J.A., & Chapman, J.A. (1996). Collagen fibril formation. Biochem J316, 111.

Kleinman, H.K., Klebe, R.J., & Martin, G.R. (1981). Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol88, 473485.

Krucinska, I. (1999a). Evaluating fibrous architecture of nonwovens with computer-assisted microscopy. Text Res J69, 363369.

Krucinska, S., Krucinska, I., Veeravanallur, S., & Slot, K. (1997). Computer-assisted analysis of the extracellular matrix of connective tissue. SPIE Proc3034, 950962.

Lo, C.M., Wang, H.B., Dembo, M., & Wang, Y.L. (2000). Cell movement is guided by the rigidity of the substrate. Biophys J79, 144152.

Ottani, V., Raspanti, M., & Ruggeri, A. (2001). Collagen structure and functional implications. Micron32, 251260.

Pelham, R.J., Jr. & Wang, Y.L. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA94, 1366113665.

Pourdeyhimi, B., Ramanathan, R., & Dent, R. (1996a). Measuring fiber orientation in nonwovens, part I: Simulation. Text Res J66, 713722.

Pourdeyhimi, B., Ramanathan, R., & Dent, R. (1996b). Measuring fiber orientation in nonwovens, part II: Direct tracking. Text Res J66, 747753.

Pourdeyhimi, B., Ramanathan, R., & Dent, R. (1997a). Measuring fiber orientation in nonwovens, part III: Fourier transform. Text Res J67, 143151.

Pourdeyhimi, B., Ramanathan, R., & Dent, R. (1997b). Measuring fiber orientation in nonwovens, part IV: Flow field analysis. Text Res J67, 181190.

Pourdeyhimi, B., Ramanathan, R., & Dent, R. (1999). Measuring fiber orientation in nonwovens, part V: Real webs. Text Res J69, 185192.

Roeder, B.A., Kokini, K., Sturgis, J.E., Robinson, J.P., & Voytik-Harbin, S.L. (2002). Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied macrostructure. J Biomech Eng124, 214222.

Stepien, E., Stanisz, J., & Korohoda, W. (1999). Contact guidance of chick embryo neurons on single scratches in glass and on underlying aligned human skin fibroblasts. Cell Biol Int23, 105116.

Voytik-Harbin, S.L., Rajwa, B., & Robinson, J.P. (2001). Three-dimensional imaging of extracellular matrix and extracellular matrix-cell interactions. Method Cell Biol63, 583597.

Yamada, K.M. (1983). Cell surface interactions with extracellular materials. Annu Rev Biochem52, 761799.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 122 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.