Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T22:52:59.633Z Has data issue: false hasContentIssue false

Application of Cathodoluminescence Microscopy and Spectroscopy in Geosciences

Published online by Cambridge University Press:  15 November 2012

Jens Götze*
Affiliation:
Institute of Mineralogy, TU Bergakademie Freiberg, Brennhausgasse 14, D-09596 Freiberg, Saxony, Germany
Get access

Abstract

Cathodoluminescence (CL) microscopy and spectroscopy are luminescence techniques with widespread applications in geosciences. Many rock-forming and accessory minerals show CL characteristics, which can be successfully used in geoscientific research. One of the most spectacular applications is the visualization of growth textures and other internal structures that are not discernable with other analytical techniques. In addition, information from CL imaging and spectroscopy can be used for the reconstruction of processes of mineral formation and alteration to provide information about the real structure of minerals and materials, and to prove the presence and type of lattice incorporation of several trace elements. In the present article, an overview about CL properties of selected minerals is given, and several examples of applications discussed. The presented data illustrate that best results are achieved when luminescence studies are performed under standardized conditions and combined with other analytical techniques with high sensitivity and high spatial resolution.

Type
Special Section: Cathodoluminescence
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, P.J., Halliburton, L.E., Kohnke, E.E. & Bossoli, R.B. (1983). X-ray induced luminescence in crystalline SiO2 . J Appl Phys 54, 53695375.CrossRefGoogle Scholar
Barker, C.E. & Kopp, O.C. (1991). Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications. Tulsa, OK: Society for Sedimentary Geology.Google Scholar
Blanc, P., Baumer, A., Cesbron, F., Ohnenstetter, D., Panczer, G. & Remond, G. (2000). Systematic cathodoluminescence spectral analysis of synthetic doped minerals: Anhydrite, apatite, calcite, fluorite, scheelite and zircon. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 127160. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Boggs, S. Jr. & Krinsley, H. (2006). Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge, UK: Cambridge University Press.Google Scholar
Boggs, S. Jr., Krinsley, D.H., Goles, G.G., Seyedolali, A. & Dypvik, H. (2001). Identification of shocked quartz by scanning cathodoluminescence imaging. Mateor Planet Sci 36, 783791.CrossRefGoogle Scholar
Botis, S., Nokhrin, S.M., Pan, Y., Xu, Y. & Bonli, T. (2005). Natural radiation-induced damage in quartz. I. Correlations between cathodoluminescence colors and paramagnetic defects. Can Mineral 43, 15651580.Google Scholar
Brooks, R.J., Finch, A.A., Hole, D.E., Townsend, P.D. & Wu, Z. (2002). The red to near-infrared luminescence in alkali feldspar. Contrib Mineral Petrol 143, 484494.Google Scholar
Burns, R.G. (1993). Mineralogical Applications of Crystal Field Theory, 2nd ed. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Demars, C., Pagel, M., Deloule, E. & Blanc, P. (1996). Cathodoluminescence of quartz from sandstones: Interpretation of the UV range by determination of trace element distributions and fluid-inclusion P-T-X properties in authigenic quartz. Amer Mineral 81, 891901.CrossRefGoogle Scholar
Edwards, P.R., Martin, R.W., O'Donnell, K.P. & Watson, I.M. (2003). Simultaneous composition mapping and hyperspectral cathodoluminescence imaging of InGaN epilayers. Phys Stat Sol 7, 24742477.Google Scholar
El Ali, A., Barbin, G., Cervelle, B., Ramseyer, K. & Bouroulec, J. (1993). Mn2+-activated luminescence in dolomite, calcite and magnesite: Quantitative determination of manganese and site distribution by EPR and CL spectroscopy. Chem Geol 104, 189202.CrossRefGoogle Scholar
Entzian, W. & Ahlgrimm, C. (1983). Comparing studies about the cathodoluminescence of SiO2 (in German). Wiss Zeit Uni Rostock, Naturwiss Reihe 32, 2729.Google Scholar
Erfurt, G. (2003). Infrared luminescence of Pb+ centres in potassium-rich feldspars. Phys Stat Sol (a) 200, 429438.Google Scholar
Evans, J., Hogg, A.J.C., Hopkins, M.S. & Howarth, R.J. (1994). Quantification of quartz cements using combined SEM, CL, and image analysis. J Sed Res A64, 334338.Google Scholar
Filippelli, G.M. & Delaney, M.L. (1993). The effects of manganese(II) and iron(II) on the cathodoluminescence signal in synthetic apatite. J Sed Petrol 63, 167173.Google Scholar
Finch, A.A. & Klein, J. (1999). The causes and petrological significance of cathodoluminescence emissions from alkali feldspars. Contrib Mineral Petrol 135, 234243.Google Scholar
Gaft, M., Reisfeld, R. & Panczer, G. (2005). Luminescence Spectroscopy of Minerals and Materials. Berlin, Heidelberg, Germany: Springer.Google Scholar
González-Acebrón, L., Götze, J., Barca, D., Arribas, J., Mas, R. & Pérez-Garrido, C. (2012). Diagenetic albitization in the Tera Group, Cameros Basin (NE Spain) recorded by trace elements and spectral cathodoluminescence. Chem Geol 312313, 148162.CrossRefGoogle Scholar
Gorobets, B.S. & Rogozine, A.A. (2002). Luminescent Spectra of Minerals. Moscow, Russia: RPC VIMS.Google Scholar
Gorobets, B.S., Gaft, M.L. & Podolskiy, A.M. (1989). Luminescence of Minerals and Ores. Moscow: Ministry of Geology (in Russian).Google Scholar
Gorton, N.T., Walker, G. & Burley, S.D. (1996). Experimental analysis of the composite blue CL emission in quartz. J Lumin 7274, 669671.Google Scholar
Götte, T. & Richter, D.K. (2004). Quantitative high-resolution cathodoluminescence spectroscopy of smithsonite. Min Mag 68, 199207.CrossRefGoogle Scholar
Götte, T. & Richter, D.K. (2006). Cathodoluminescence characterization of quartz particles in mature arenites. Sedimentology 53, 13471359.Google Scholar
Götze, J. (2000). Cathodoluminescence Microscopy and Spectroscopy in Applied Mineralogy. Freiberg, Germany: Freiberger Forschungsheft C 485.Google Scholar
Götze, J. (2009a). Chemistry, textures and physical properties of quartz—Geological interpretation and technical application. Mineral Mag 73, 645671.Google Scholar
Götze, J. (2009b). Cathodoluminescence microscopy and spectroscopy of lunar rocks and minerals. In Cathodoluminescence and Its Application in the Planetary Sciences, Gucsik, A. (Ed.), pp. 87110. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Götze, J. (2012). Mineralogy, geochemistry and cathodoluminescence of authigenic quartz from different sedimentary rocks. In Quartz: Deposits, Mineralogy and Analytics, Götze, J. & Möckel, R. (Eds.), pp. 287306. Berlin, Heidelberg: Springer.Google Scholar
Götze, J., Habermann, D., Kempe, U., Neuser, R.D. & Richter, D.K. (1999a). Cathodoluminescence microscopy and spectroscopy of plagioclases from lunar soil (Luna20, Luna 24). Amer Mineral 84, 10271032.CrossRefGoogle Scholar
Götze, J., Habermann, D., Neuser, R.D. & Richter, D.K. (1999b). High-resolution spectrometric analysis of REE-activated cathodoluminescence (CL) in feldspar minerals. Chem Geol 153, 8191.CrossRefGoogle Scholar
Götze, J. & Kempe, U. (2008). A comparison of optical microscope (OM) and scanning electron microscope (SEM) based cathodoluminescence (CL) imaging and spectroscopy applied to geosciences. Mineral Mag 72, 909924.Google Scholar
Götze, J. & Kempe, U. (2009). Physical principles of cathodoluminescence and its applications to geosciences. In Cathodoluminescence and Its Application in the Planetary Sciences, Gucsik, A. (Ed.), pp. 122. Berlin, Heidelberg, New York: Springer.Google Scholar
Götze, J., Krbetschek, M.R., Habermann, D. & Wolf, D. (2000). High-resolution cathodoluminescence studies of feldspar minerals. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 245270. Berlin, Heidelberg, New York: Springer.Google Scholar
Götze, J. & Magnus, M. (1997). Quantitative determination of mineral abundance in geological samples using combined cathodoluminescence microscopy and image analysis. Euro J Mineral 9, 12071215.CrossRefGoogle Scholar
Götze, J., Plötze, M., Fuchs, H. & Habermann, D. (1999c). Defect structure and luminescence behaviour of agate—Results of electron paramagnetic resonance (EPR) and cathodoluminescence (CL) studies. Miner Mag 63, 149163.Google Scholar
Götze, J., Plötze, M., Götte, T., Neuser, R.D. & Richter, D.K. (2002). Cathodoluminescence (CL) and electron paramagnetic resonance (EPR) studies of clay minerals. Mineral Petrol 76, 195212.CrossRefGoogle Scholar
Götze, J., Plötze, M. & Habermann, D. (2001). Origin, spectral characteristics and practical applications of the cathodoluminescence (CL) of quartz: A review. Mineral Petrol 71, 225250.Google Scholar
Götze, J., Plötze, M. & Trautmann, T. (2005). Structure and luminescence characteristics of quartz from pegmatites. Amer Mineral 90, 1321.CrossRefGoogle Scholar
Götze, J. & Siedel, H. (2004). Microscopic scale characterization of ancient building sandstones from Saxony (Germany). Mater Charact 53, 209222.Google Scholar
Götze, J. & Zimmerle, W. (2000). Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contrib Sed Petrol 21, 191.Google Scholar
Graupner, T., Götze, J., Kempe, U. & Wolf, D. (2000). Cathodoluminescence imaging as a tool for characterization of quartz and trapped fluid inclusions in multistage deformed mesothermal Au-quartz vein deposits: A case study from the giant Muruntau Au-ore deposit (Uzbekistan). Mineral Mag 64, 10071016.CrossRefGoogle Scholar
Graupner, T., Kempe, U., Götze, J., Wolf, D., Irmer, G. & Kremenetsky, A.A. (2001). Au deposition and remobilization in the Muruntau “Central” quartz veins: Evidence from SEM, cathodoluminescence and fluid inclusion data. In Mineral Deposits at the Beginning of the 21st Century, Piestrzyński, A. et al. (Eds.), pp. 747750. Lisse, The Netherlands: Swets & Zeitlinger Publishers.Google Scholar
Gucsik, A. (2009). Cathodoluminescence and Its Application in the Planetary Sciences. Berlin, Heidelberg, Germany: Springer.Google Scholar
Gucsik, A., Koeberl, Ch., Brandstätter, F., Libowitzky, E. & Reimold, W.U. (2003). Scanning electron microscopy, cathodoluminescence and Raman spectroscopy of experimentally shock-metamorphosed quartzite. Meteor Planet Sci 38, 11871197.Google Scholar
Gucsik, A., Nishido, H., Ninagawa, K., Toyoda, S., Bidló, A., Brezsnyánsky, K. & Tsuchiyama, A. (2005). Cathodoluminescence spectral studies of the experimentally shock-deformed plagioclase: A possible explanation of CL peak shifts. Lunar Planet Sci Conf XXXVI, Abstract 1239. Google Scholar
Guguschev, C., Götze, J. & Göbbels, M. (2010). Cathodoluminescence microscopy and spectroscopy of synthetic ruby crystals grown by the optical floating zone technique. Amer Mineral 95, 449455.Google Scholar
Habermann, D. (2002). Quantitative cathodoluminescence (CL) spectroscopy of minerals: Possibilities and limitations. Mineral Petrol 76, 247259.Google Scholar
Habermann, D., Götze, J., Neuser, R. & Richter, D.K. (1997). The phenomenon of intrinsic cathodoluminescence: Case studies of quartz, calcite and apatite. Zentralbl Geol Paläont Teil 1, Heft 10–12, 12751284.Google Scholar
Habermann, D., Neuser, R.D. & Richter, D.K. (1996). REE-activated cathodoluminescence of calcite and dolomite: High resolution spectrometric analysis of CL emission (HRS-CL). Sed Geol 101, 17.CrossRefGoogle Scholar
Habermann, D., Neuser, R. & Richter, D.K. (1998). Low limit of Mn2+-activated cathodoluminescence of calcite: state of the art. Sed Geol 116, 1324.CrossRefGoogle Scholar
Habermann, D., Neuser, R.D. & Richter, D.K. (2000). Quantitative high resolution spectral analysis of Mn2+ in sedimentary calcite. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 331358. Berlin, Heidelberg, New York: Springer.Google Scholar
Houseknecht, D.W. (1991). Use of cathodoluminescence petrography for understanding compaction, quartz cementation, and porosity in sandstones. In Luminescence microscopy: Quantitative and Qualitative Aspects, Baker, C.E. & Kopp, O.C. (Eds.), pp. 5966. Dallas, TX: SEPM.Google Scholar
Hughes, J.M., Cameron, M. & Crowley, K.D. (1991a). Ordering of divalent cations in the apatite structure: Crystal structure refinements of natural Mn- and Sr-bearing apatite. Amer Mineral 76, 18571862.Google Scholar
Hughes, J.M., Cameron, M. & Mariano, A.M. (1991b). Rare-earth-element ordering and structural variations in natural rare-earth bearing apatite. Amer Mineral 76, 11651173.Google Scholar
Ioannou, S.E., Götze, J., Weiershäuser, L., Zubowski, S.M. & Spooner, E.T.C. (2003). Cathodoluminescence characteristics of Archean VMS-related quartz: Noranda, Ben Nevis, and Matagami districs, Abitibi Subprovince, Canada. G3 Online Publication 5(2), DOI:10.1029/2003GC000613.Google Scholar
Itoh, C., Tanimura, K. & Itoh, N. (1988). Optical studies of self-trapped excitons in SiO2 . J Phys C Solid State 21, 46934702.CrossRefGoogle Scholar
Jaek, I., Hütt, G. & Vasiltchenko, E. (1996). Luminescence of the natural alkali feldspars artificially doped by Eu- and Cu-ions. Third Europ Meeting Spectrosc Methods in Miner, Kiev, Progr & Abstr, 23. Google Scholar
Jones, C.E. & Embree, D. (1976). Correlations of the 4.77–4.28 eV luminescence band in silicon dioxide with oxygen vacancy. J Appl Phys 47, 53655371.Google Scholar
Kayama, M., Nakano, S. & Nishido, H. (2010). Characteristics of emission centers in alkali feldspar: A new approach by using cathodoluminescence spectral deconvolution. Amer Mineral 95, 17831795.CrossRefGoogle Scholar
Kayama, M., Nishido, H., Toyoda, S., Komuro, K. & Ninagawa, K. (2011). Radiation effects on cathodoluminescence of albite. Amer Mineral 96, 12381247.Google Scholar
Kayama, M., Okumura, T., Nishido, H., Ninagawa, K. & Gucsik, A. (2006). Cathodoluminescence and Raman spectroscopy of shocked feldspar with PDFs. Meteor Planet Sci 41(Suppl), 5180. Google Scholar
Kempe, U. & Götze, J. (2002). Cathodoluminescence (CL) behaviour and crystal chemistry of apatite from rare-metal deposits. Mineral Mag 66, 135156.Google Scholar
Kempe, U., Gruner, T., Nasdala, L. & Wolf, D. (2000). Relevance of cathodoluminescence for the interpretation of U-Pb zircon ages, with an example of an application to a study of zircons from the Saxonian Granulite Complex, Germany. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 425456. Berlin, Heidelberg, New York: Springer.Google Scholar
Komuro, K., Horikawa, Y. & Toyoda, S. (2002). Development of radiation-damage halos in low-quartz: Cathodoluminescence measurement after He+ ion implantation. Mineral Petrol 76, 261266.CrossRefGoogle Scholar
Kostov, R.I. & Bershov, L.V. (1987). Systematics of paramagnetic electron-hole centres in natural quartz (in Russ.). Izvestiya Akademii nauk SSSR, Seria geologia 7, 8087.Google Scholar
Krbetschek, M.R., Götze, J., Irmer, G., Rieser, U. & Trautmann, T. (2002). The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca–composition. Mineral Petrol 76, 167177.Google Scholar
Krickl, R., Götze, J. & Nasdala, L. (2007). New record of radiohaloes in feldspars. Mitt Österr Miner Ges 153, Abstract. Google Scholar
Krickl, R., Nasdala, L., Götze, J., Grambole, D. & Wirth, R. (2008). Alteration of SiO2 caused by natural and artificial alpha-irradiation. Europ J Mineral 20, 517522.Google Scholar
Laud, K.R., Gibbons, E.F., Tien, T.Y. & Stadler, H.L. (1971). Cathodoluminescence of Ce3+ and Eu2+-activated alkaline earth feldspars. J Electrochem Soc 118, 918923.Google Scholar
Lee, M.R., Parsons, I., Edwards, P.R. & Martin, R.W. (2007). Identification of cathodoluminescence activators in zoned alkali feldspars by hyperspectral imaging and electron-probe microanalysis. Amer Mineral 92, 243253.Google Scholar
Machel, H.G. (2000). Application of cathodoluminescence to carbonate diagenesis. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 271302. Berlin, Heidelberg, New York: Springer.Google Scholar
Machel, H.G. & Burton, E.A. (1991). Factors governing cathodoluminescence in calcite and dolomite, and their implications for studies of carbonate diagenesis. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, Barker, C.E. & Kopp, O.C. (Eds.), pp. 3758. Tulsa, OK: SEPM.Google Scholar
MacRae, C.M., Wilson, N.C. & Brugger, J. (2009). Quantitative cathodoluminescence mapping with application to a Kalgoorlie Scheelite. Microsc Microanal 15(3), 222230.CrossRefGoogle ScholarPubMed
MacRae, C.M., Wilson, N.C., Johnson, S.A., Phillips, P.L. & Otsuki, M. (2005). Hyperspectral mapping—Combining cathodoluminescence and X-ray collection in an electron microprobe. Microsc Res Techn 67(5), 271277.CrossRefGoogle Scholar
Marfunin, A.S. (1979). Spectroscopy, Luminescence and Radiation Centres in Minerals. Berlin, Germany: Springer.Google Scholar
Marfunin, A.S. & Bershov, L.V. (1970). Electron-hole centers in feldspars and their possible crystalchemical and petrological significance (in Russ.). Dokl Akad Nauk 193, 412414.Google Scholar
Mariano, A.N., Ito, J. & Ring, P.J. (1973). Cathodoluminescence of plagioclasi feldspars. Geological Society of America, Abstract and Program 5, 726.Google Scholar
Mariano, A.N. & Ring, P.J. (1975). Europium-activated cathodoluminescence in minerals. Geochim Cosm Acta 39, 649660.Google Scholar
Marshall, D.J. (1988). Cathodoluminescence of Geological Materials. Boston, MA: Unwin-Hyman.Google Scholar
Mason, R.A. & Mariano, A.N. (1990). Cathodoluminescence activation in manganese bearing and rare-earth bearing synthetic calcites. Chem Geol 88, 191206.Google Scholar
Meunier, J.D., Sellier, E. & Pagel, M. (1990). Radiation-damage rims in quartz from uranium-bearing sandstones. J Sed Petrol 60, 5358.Google Scholar
Meyers, W.J. (1974). Carbonate cement stratigraphy of the Lake Valley Formation (Mississippian), Sacramento Mountains, New Mexico. J Sed Petrol 44, 837861.Google Scholar
Meyers, W.J. (1991). Calcite cement stratigraphy: An overview. In Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative Applications, Barker, C.E. & Kopp, O.C. (Eds.), pp. 133148. Tulsa, OK: SEPM.Google Scholar
Michalski, St., Götze, J., Siedel, H., Magnus, M. & Heimann, R.B. (2002). Investigations into provenance and properties of ancient building sandstones of the Zittau/Görlitz region (Upper Lusatia, Eastern Saxony, Germany). In Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies, Siegesmund, S., Vollbrecht, A. & Weiss, T. (Eds.), pp. 281295. London: Geological Society Special Publications.Google Scholar
Milliken, K.L. & Laubach, S.E. (2000). Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 225242. Berlin, Heidelberg, New York, Tokyo: Springer.Google Scholar
Mitchell, R.H., Xiong, J., Mariano, A.N. & Fleet, M.E. (1997). Rare-earth-element-activated cathodoluminescence of apatite. Can Mineral 35, 979998.Google Scholar
Müller, A., Kronz, A. & Breiter, K. (2002). Trace elements and growth patterns in quartz: A fingerprint of the evolution of the subvolcanic Podlesi Granite System (Krušne Hory, Czech Republic). Bull Czech Geol Surv 77/2, 135145.Google Scholar
Müller, A., Rene, M., Behr, H.-J. & Kronz, A. (2003). Trace elements and cathodoluminescence of igneous quartz in topaz granites from the Hub Stock (Slavkovský Les Mts., Czech Rebublic). Mineral Petrol 79, 167191.Google Scholar
Müller, A., Seltmann, R. & Behr, H.J. (2000). Application of cathodoluminescence to magmatic quartz in tin granite—Case study from the Schellerhau Granite Complex, Eastern Ertgebirge, Germany. Miner Deposita 35, 169185.Google Scholar
Nasdala, L., Götze, J., Gaft, M., Hanchar, J. & Krbetschek, M. (2004). Luminescence techniques in earth sciences. EMU Notes Mineral 6, 149.Google Scholar
Nasdala, L., Grambole, D., Götze, J., Kempe, U. & Váczi, T. (2010). Helium irradiation study on zircon. Contr Mineral Petrol 161, 777789.Google Scholar
Nasdala, L., Zhang, M., Kempe, U., Panczer, G., Gaft, M., Andrut, M. & Plötze, M. (2003). Spectroscopic methods applied to zircon. In Zircon, Hanchar, J.M. & Hoskin, P.W.O. (Eds.), pp. 427467, Rev Mineral Geochem 41. Washington DC: Mineral Society of America.Google Scholar
Owen, M.R. (1988). Radiation-damage halos in quartz. Geology 16, 529532.2.3.CO;2>CrossRefGoogle Scholar
Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (2000). Cathodoluminescence in Geosciences. Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Parsons, I., Steele, D.A., Lee, M.R. & Magee, C.W. (2008). Titanium as a cathodoluminescence activator in alkali feldspars. Amer Mineral 93, 875879.CrossRefGoogle Scholar
Perny, B., Eberhardt, P., Ramseyer, K. & Mullis, J. (1992). Microdistribution of aluminium, lithium and sodium in quartz: Possible causes and correlation with short-lived cathodoluminescence. Amer Mineral 77, 534544.Google Scholar
Perseil, E.-A., Blanc, P. & Ohnenstetter, D. (2000). As-bearing fluorapatite in manganiferous deposits from St. Marcel-Praborna, Val D=Aosta, Italy. Canad Mineral 38, 101117.CrossRefGoogle Scholar
Plötze, M. & Wolf, D. (1996). EPR- and TL-spectra of quartz: Irradiation dependence of (TiO4 /Li+)-centers (in German). Eur J Mineral, Bh 8, 217.Google Scholar
Portnov, A.M. & Gorobets, B.S. (1969). Luminescence of apatite from different rock types (in Russian). Dokl Akademii Nauk SSSR 184, 110115.Google Scholar
Pott, G.T. & McNicol, B.D. (1971). Spectroscopic study of the coordination and valence of Fe and Mn ions in and on the surface of aluminas and silicas. Disc Faraday Soc 52, 121131.Google Scholar
Rakovan, J. & Reeder, R. (1996). Intracrystalline rare earth element distributions in apatite: Surface structural influences on incorporation during growth. Geochim Cosmochim Acta 60, 44354445.Google Scholar
Ramseyer, K., Aldahan, A.A., Collini, B. & Landstrom, O. (1992a). Petrological modifications in granitic rocks from the Siljan impact structure: Evidence from cathodoluminescence. Tectonophysics 216, 195204.CrossRefGoogle Scholar
Ramseyer, K., Baumann, J., Matter, A. & Mullis, J. (1988). Cathodoluminescence colours of alpha-quartz. Mineral Mag 52, 669677.Google Scholar
Ramseyer, K., Boles, J.R. & Lichtner, P.C. (1992b). Mechanism of diagenetic albitization. J Sed Petrol 62, 349356.Google Scholar
Ramseyer, K. & Mullis, J. (1990). Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Amer Miner 75, 791800.Google Scholar
Remond, G., Phillips, M.R. & Roques-Carmes, C. (2000). Importance of instrumental and experimental factors on the interpretation of cathodoluminescence data from wide band gap materials. In Cathodoluminescence in Geosciences, Pagel, M., Barbin, V., Blanc, P. & Ohnenstetter, D. (Eds.), pp. 59126. Berlin, Heidelberg, New York: Springer.Google Scholar
Richter, D.K., Götte, T., Götze, J. & Neuser, R.D. (2003). Progress in application of cathodoluminescence (CL) in sedimentary geology. Mineral Petrol 79, 127166.Google Scholar
Richter, D.K., Götte, T. & Habermann, D. (2002). Cathodoluminescence of authigenic albite. Sed Geol 150, 367374.CrossRefGoogle Scholar
Rink, W.J., Rendell, H., Marseglia, E.A., Luff, B.J. & Townsend, P.D. (1993). Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Phys Chem Miner 20, 353361.CrossRefGoogle Scholar
Rønsbo, J.G. (1989). Coupled substitution involving REEs and Na and Si in alkaline rocks from the Ilimaussaq intrusion, South Greenland and the petrological implications. Amer Mineral 74, 896901.Google Scholar
Rusk, B., Lowers, H.A. & Reed, M.H. (2008). Trace elements in hydrothermal quartz: Relationships to cathodoluminescent textures and insights into vein formation. Geology 36, 547550.Google Scholar
Rusk, B.G., Reed, M.H., Dilles, J.H. & Kent, A.J.R. (2006). Intensity of quartz cathodoluminescence and trace-element content in quartz from the porphyry copper deposit at Butte, Montana. Amer Mineral 91, 13001312.Google Scholar
Siegel, G.H. & Marrone, M.J. (1981). Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of nonbridging oxygen defect centres. J Non-Cryst Sol 45, 235247.CrossRefGoogle Scholar
Sippel, R.F. (1965). Simple device for luminescence petrography. Rev Sci Instrum 36, 556558.CrossRefGoogle Scholar
Sippel, R.F. (1971). Luminescence petrography of the Apollo 12 rocks and comperative features in terrestrial rocks and meteorites. Proc Second Lunar Sci Conf 1, 247263.Google Scholar
Sippel, R.F. & Spencer, A.B. (1970). Luminescence petrography and properties of lunar crystalline rocks and meteorites. Proc Apollo 11 Lunar Sci Conf 3, 24132426.Google Scholar
Skuja, L. (1998). Optically active oxygen-deficiency-related centers in amorphous silicon dioxid. J Non-Cryst Sol 239, 1648.Google Scholar
Slaby, E. & Götze, J. (2004). Feldspar crystallization under magma mixing conditions evidenced by cathodoluminescence and geochemical modelling—A case study from Karkonosze pluton (SW Poland). Mineral Mag 68, 541557.Google Scholar
Smith, J.V. & Stenstrom, R.C. (1965). Electron-excited luminescence as a petrological tool. J Geol 73, 627635.Google Scholar
Spear, F.S. & Wark, D.A. (2009). Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. J Metam Geol 27, 187205.Google Scholar
Stevens-Kalceff, M.A. (2009). Cathodoluminescence microcharacterization of point defects in α-quartz. Miner Mag 73, 585606.Google Scholar
Stevens-Kalceff, M.A. & Phillips, M.R. (1995). Cathodoluminescence microcharacterization of the defect structure of quartz. Phys Rev B 52, 31223134.Google Scholar
Tarashchan, A.N., Serebrennikov, A.I. & Platonov, A.N. (1973). Features of lead ions luminescence in amazonite. Constitutions and Properties of Minerals 7, 106111 (in Russian).Google Scholar
Van den Kerkhof, A.M., Kronz, A., Simon, K. & Scherer, T. (2004). Fluid-controlled quartz recovery in granulite as revealed by cathodoluminescnece and trace element analysis (Bamble sector, Norway). Contr Mineral Petrol 146, 637652.Google Scholar
Walker, G. (1985). Mineralogical applications of luminescence techniques. In Chemical Bonding and Spectroscopy in Mineral Chemistry, Berry, F.J. & Vaughan, D.J. (Eds.), pp. 103140. Birmingham, UK: University of Birmingham.Google Scholar
Wark, D.A., Hildreth, W., Spear, F.S., Cherniak, D.J. & Watson, E.B. (2007). Pre-eruption recharge of the Bishop magma system. Geology 35, 235238.CrossRefGoogle Scholar
Weil, J.A. (1984). A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz. Phys Chem Miner 10, 149165.Google Scholar
Weil, J.A. (1993). A review of the EPR spectroscopy of the point defects in α-quartz: The decade 1982–1992. In Physics and Chemistry of SiO2 and the Si-SiO Interface 2, Helms, C.R. & Deal, B.E. (Eds.), pp. 131144. New York: Plenum Press.Google Scholar
Wendler, J., Köster, J., Götze, J., Kasch, N., Zisser, N., Kley, J., Pudlo, D., Nover, G. & Gaupp, R. (2012). Carbonate diagenesis and feldspar alteration in fault-related bleaching zones (Buntsandstein, Central Germany)—Possible link to CO2-influenced fluid-mineral reaction. Int J Earth Sci 101, 159176.Google Scholar
Yang, X.H. & McKeever, S.W.S. (1990). Point defects and pre-dose effect in quartz. Radiat Protect Dosim 33, 2730.Google Scholar
Zinkernagel, U. (1978). Cathodoluminescence of quartz and its application to sandstone petrology. Contr Sed 8, 169.Google Scholar