Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 48
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    De Yoreo, James J. 2016. In-situ liquid phase TEM observations of nucleation and growth processes. Progress in Crystal Growth and Characterization of Materials, Vol. 62, Issue. 2, p. 69.


    De Yoreo, J. J. and N. A. J. M., Sommerdijk 2016. Investigating materials formation with liquid-phase and cryogenic TEM. Nature Reviews Materials, Vol. 1, Issue. 8, p. 16035.


    Jinschek, Joerg R. 2016. Achieve atomic resolution in in situ S/TEM experiments to examine complex interface structures in nanomaterials. Current Opinion in Solid State and Materials Science,


    Katsukura, Hirotaka Miyata, Tomohiro Tomita, Kota and Mizoguchi, Teruyasu 2016. Effect of the van der Waals interaction on the electron energy-loss near edge structure theoretical calculation. Ultramicroscopy,


    Lewis, Edward A. Downie, Helen Collins, Richard F. Prestat, Eric Lloyd, Jonathan R. and Haigh, Sarah J. 2016. Imaging the Hydrated Microbe-Metal Interface Using Nanoscale Spectrum Imaging. Particle & Particle Systems Characterization,


    Liao, Hong-Gang and Zheng, Haimei 2016. Liquid Cell Transmission Electron Microscopy. Annual Review of Physical Chemistry, Vol. 67, Issue. 1, p. 719.


    Prozorov, Tanya 2016. Iron Oxides.


    Soltis, Jennifer A. and Penn, R. Lee 2016. Iron Oxides.


    Xu, Tao and Sun, Litao 2016. Investigation on material behavior in liquid by in situ TEM. Superlattices and Microstructures,


    Chee, See Wee Pratt, Sarah H. Hattar, Khalid Duquette, David Ross, Frances M. and Hull, Robert 2015. Studying localized corrosion using liquid cell transmission electron microscopy. Chem. Commun., Vol. 51, Issue. 1, p. 168.


    Chen, Xin Li, Chang and Cao, Hongling 2015. Recent developments of the in situ wet cell technology for transmission electron microscopies. Nanoscale, Vol. 7, Issue. 11, p. 4811.


    Moser, Trevor Shokuhfar, Tolou and Evans, James 2015. Improved Environmental Control and Experimental Repeatability with New In-Situ Devices. Microscopy and Microanalysis, Vol. 21, Issue. S3, p. 949.


    Patterson, Joseph P. Abellan, Patricia Denny, Michael S. Park, Chiwoo Browning, Nigel D. Cohen, Seth M. Evans, James E. and Gianneschi, Nathan C. 2015. Observing the Growth of Metal–Organic Frameworks byin SituLiquid Cell Transmission Electron Microscopy. Journal of the American Chemical Society, Vol. 137, Issue. 23, p. 7322.


    Ross, F. M. 2015. Opportunities and challenges in liquid cell electron microscopy. Science, Vol. 350, Issue. 6267, p. aaa9886.


    Shi, Hui Lercher, Johannes A. and Yu, Xiao-Ying 2015. Sailing into uncharted waters: recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catal. Sci. Technol., Vol. 5, Issue. 6, p. 3035.


    Smeets, Paul J. M. Cho, Kang Rae Kempen, Ralph G. E. Sommerdijk, Nico A. J. M. and De Yoreo, James J. 2015. Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nature Materials, Vol. 14, Issue. 4, p. 394.


    Tanase, Mihaela Winterstein, Jonathan Sharma, Renu Aksyuk, Vladimir Holland, Glenn and Liddle, James A. 2015. High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the Transmission Electron Microscope. Microscopy and Microanalysis, Vol. 21, Issue. 06, p. 1629.


    Unocic, Raymond R. Baggetto, Loïc Veith, Gabriel M. Aguiar, Jeffery A. Unocic, Kinga A. Sacci, Robert L. Dudney, Nancy J. and More, Karren L. 2015. Probing battery chemistry with liquid cell electron energy loss spectroscopy. Chem. Commun., Vol. 51, Issue. 91, p. 16377.


    Wang, Chong-Min 2015. In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view. Journal of Materials Research, Vol. 30, Issue. 03, p. 326.


    Wang, Chong-Min Liao, Hong-Gang and Ross, Frances M. 2015. Observation of materials processes in liquids by electron microscopy. MRS Bulletin, Vol. 40, Issue. 01, p. 46.


    ×

Atomic-Scale Imaging and Spectroscopy for In Situ Liquid Scanning Transmission Electron Microscopy

  • Katherine L. Jungjohann (a1), James E. Evans (a2), Jeffery A. Aguiar (a1) (a3), Ilke Arslan (a1) and Nigel D. Browning (a1) (a2)
  • DOI: http://dx.doi.org/10.1017/S1431927612000104
  • Published online: 02 May 2012
Abstract
Abstract

Observation of growth, synthesis, dynamics, and electrochemical reactions in the liquid state is an important yet largely unstudied aspect of nanotechnology. The only techniques that can potentially provide the insights necessary to advance our understanding of these mechanisms is simultaneous atomic-scale imaging and quantitative chemical analysis (through spectroscopy) under environmental conditions in the transmission electron microscope. In this study we describe the experimental and technical conditions necessary to obtain electron energy loss (EEL) spectra from a nanoparticle in colloidal suspension using aberration-corrected scanning transmission electron microscopy (STEM) combined with the environmental liquid stage. At a fluid path length below 400 nm, atomic resolution images can be obtained and simultaneous compositional analysis can be achieved. We show that EEL spectroscopy can be used to quantify the total fluid path length around the nanoparticle and demonstrate that characteristic core-loss signals from the suspended nanoparticles can be resolved and analyzed to provide information on the local interfacial chemistry with the surrounding environment. The combined approach using aberration-corrected STEM and EEL spectra with the in situ fluid stage demonstrates a plenary platform for detailed investigations of solution-based catalysis.

Copyright
Corresponding author
Corresponding author. E-mail: klweeks@ucdavis.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A.S. Aricò , P. Bruce , B. Scrosati , J. Tarascon & W. Schalkwijk (2005). Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4, 366377.

U. Bergmann , Ph. Wernet , P. Glatzel , M. Cavalleri , L.G.M. Pettersson , A. Nilsson & S.P. Cramer (2002). X-ray Raman spectroscopy at the oxygen K edge of water and ice: Implications on local structure models. Phys Rev B 66, 092107.

N.D. Browning , M.F. Chisholm & S.J. Pennycook (1993). Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366, 143146.

K.L. Chen , B.A. Smith , W.P. Ball & D.H. Fairbrother (2010). Assessing the colloidal properties of engineered nanoparticles in water: Case studies from fullerene C60 nanoparticles and carbon nanotubes. Environ Chem 7, 1027.

J.N. Coleman , M. Lotya , A. O'Neill , S.D. Bergin , P.J. King , U. Khan , K. Young , A. Gaucher , S. De , R.J. Smith , I.V. Shvets , S.K. Arora , G. Stanton , H. Kim , K. Lee , G.T. Kim , G.S. Duesberg , T. Hallam , J.J. Boland , J.J. Wang , J.F. Donegan , J.C. Grunlan , G. Moriarty , A. Shmeliov , R.J. Nicholls , J.M. Perkins , E.M. Grievesson , K. Theuwissen , D.W. McComb , P.D. Nellist & V. Nicolosi (2011). Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568571.

V.L. Colvin (2003). The potential environmental impact of engineered nanomaterials. Nat Biotech 21, 11661170.

N. de Jonge , D.B. Peckys , G.J. Kremers & D.W. Piston (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106, 21592164.

R.F. Egerton (1996). Electron Energy Loss Spectroscopy. New York: Plenum Press.

J.E. Evans , K.L. Jungjohann , N.D. Browning & I. Arslan (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.

D. Grand , A. Bernas & E. Amouyal (1979). Photoionization of aqueous indole; Conduction band edge and energy gap in liquid water. Chem Phys 44, 7379.

P. Hartel , H. Rose & C. Dinges (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93114.

M. Henderson (1996). Structural sensitivity in the dissociation of water on TiO2, single crystal surfaces. Langmuir 12, 50935098.

K. Iakoubovskii , K. Mitsuishi , Y. Nakayama & K. Furuya (2008). Mean free path of inelastic electron scattering in elemental solids and oxides using transmission electron microscopy: Atomic number dependent oscillatory behavior. Phys Rev B 77, 104102.

E.M. James & N.D. Browning (1999). Practical aspects of atomic resolution imaging and analysis in STEM. Ultramicroscopy 78, 125139.

N. Jiang & J.C.H. Spence (2011). In situ EELS study of dehydration of Al(OH)3 by electron beam irradiation. Ultramicroscopy 111, 860864.

W.B. Kim , T. Voitl , G.J. Rodriguez-Rivera & J.A. Dumesic (2004). Powering fuel cells with Co via aqueous polyoxometalates and gold catalysts. Science 305, 12801283.

T. LaGrange , M.R. Armstrong , K. Boyden , C.G. Brown , G.H. Campbell , J.D. Colvin , W.J. DeHope , A.M. Frank , D.J. Gibson , F.V. Hartemann , J.S. Kim , W.E. King , B.J. Pyke , B.W. Reed , M.D. Shirk , R.M. Shuttlesworth , B.C. Stuart & B.R. Torralva (2006). Single-shot dynamic transmission electron microscopy. Appl Phys Lett 89, 044105.

K.L. Liu , C.C. Wu , Y.J. Huang , H.L. Pang , H.Y. Chang , P. Chang , L. Hsu & T.R. Yew (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip 8, 19151921.

T. Malis , S.C. Cheng & R.F. Egerton (1988). EELS log-ratio technique for specimen-thickness measurement in the TEM. J Elec Micro Tech 8, 193200.

A.S. Manocha & R.L. Park (1977). Flotation related ESCA studies on PbS surfaces. Appl Surf Sci 1, 129141.

J.M. Martin , J.L. Mansot & M. Hallouis (1989). Energy filtered electron microscopy (EFEM) of overbased reverse micelles. Ultramicroscopy 30, 321328.

D.A. Muller , T. Sorsch , S. Moccio , F.H. Baumann , K. Evans-Lutterodt & G. Timp (1999). The electronic structure at the atomic scale of ultrathin gate oxides. Nature 399, 758761.

A.E. Nel , L. Mädler , D. Velegol , T. Xia , E.M.V. Hoek , P. Somasundaran , F. Klaessig , V. Castranova & M. Thompson (2009). Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8, 543557.

G. Oberdörster , A. Maynard , K. Donaldson , V. Castranova , J. Fitzpatrick , K. Ausman , J. Carter , B. Karn , W. Kreyling , D. Lai , S. Olin , N. Monteiro-Riviere , D. Warheit , H. Yang & A Report from the ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005). Particle and fibre toxicology. Part Fibre Toxicol 2, 8.

E. Stefanovich & T. Truong (1999). Ab initio study of water adsorption on TiO2 (110): Molecular adsorption versus dissociative chemisorption. Chem Phys Lett 299, 623629.

F. Tao & M. Salmeron (2011). In situ studies of chemistry and structure of materials in reactive environments. Science 331, 171174.

M.G. Walls & A. Howie (1989). Dielectric theory of localised valence energy loss spectroscopy. Ultramicroscopy 28, 4042.

M.J. Williamson , R.M. Tromp , P.M. Vereecken , R. Hull & F.M. Ross (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.

H. Zheng , S.A. Claridge , A.M. Minor , A.P. Alivisatos & U. Dahmen (2009a). Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett 9, 24602465.

H. Zheng , R.K. Smith , Y. Jun , C. Kisielowski , U. Dahmen & A.P. Alivisatos (2009b). Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 13091312.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: