Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T11:20:40.073Z Has data issue: false hasContentIssue false

Cathodoluminescence Microanalysis of Irradiated Microcrystalline and Nanocrystalline Samarium Doped BaFCl

Published online by Cambridge University Press:  20 November 2012

Marion A. Stevens-Kalceff*
Affiliation:
School of Physics, University of New South Wales, Sydney NSW 2052, Australia Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney NSW 2052, Australia
Zhiqiang Liu
Affiliation:
School of Physical, Environmental and Mathematical Sciences, University of New South Wales, ADFA, Canberra ACT 2600, Australia
Hans Riesen
Affiliation:
School of Physical, Environmental and Mathematical Sciences, University of New South Wales, ADFA, Canberra ACT 2600, Australia
*
*Corresponding author. E-mail: Marion.Stevens-Kalceff@unsw.edu.au
Get access

Abstract

BaFCl:Sm3+ is an efficient photoluminescent storage phosphor for ionizing radiation. Cathodoluminescence (CL) microanalysis enables the Sm2+ and Sm3+ oxidation states of samarium doped BaFCl to be easily identified, provides information about electron-beam and X-ray induced modification of BaFCl:Sm, and enables the synthesis dependent spatial distribution of samarium dopants of <100 ppm concentration to be determined with sub-100 nm resolution at 295 K. CL spectroscopy of BaFCl:Sm particles reveals broad CL emissions at ∼360 and ∼500 nm associated with Vk(Cl) and oxygen-vacancy defects in the BaFCl host lattice and fine structure CL emissions associated with major 4GJ6HJ (Sm3+) and 5DJ7FJ (Sm2+) transitions. CL microanalysis shows samarium dopants are uniformly distributed in conventional sintered microcrystalline BaFCl:Sm. In contrast, CL investigations reveal that for BaFCl:Sm nanoparticles, which have been prepared using a co-precipitation method, with greatly improved Sm3+ → Sm2+ conversion efficiency, the samarium dopants are concentrated near the particle surface resulting in a BaFCl:Sm3+ shell surrounding the BaFCl core, which is stable to energetic irradiation.

Type
Special Section: Cathodoluminescence
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baetzold, R.C. (1987). Atomistic simulation of defects in alkaline-earth fluorohalide crystals. Phys Rev B 36, 91829190.CrossRefGoogle ScholarPubMed
Belev, G., Okada, G., Tonchev, D., Koughia, C., Varoy, C., Edgar, A., Wysokinski, T., Chapman, D. & Kasap, S. (2011). Valency conversion of samarium ions under high dose synchrotron generated X-ray radiation. Phys Status Solidi C 8, 28222825.CrossRefGoogle Scholar
Chen, W., Kristianpoller, N., Shmilevich, A., Weiss, D., Chen, R. & Su, M. (2005). X-ray storage luminescence of BaFCl:Eu2+ single crystals. J Phys Chem B 109, 1150511511.CrossRefGoogle ScholarPubMed
Chen, W., Song, Q. & Su, M. (1997). Electron migration in BaFCl:Eu2+ phosphors. J Appl Phys 81, 31703174.CrossRefGoogle Scholar
Crawford, M.K., Brixner, L.H. & Somaiah, K. (1989). X-ray excited luminescence spectroscopy of barium fluorohalides. J Appl Phys 66, 37583762.CrossRefGoogle Scholar
Drouin, D. (2006). Casino—A powerful simulation tool for cathodoluminescence applications. Microsc Microanal 12, 15121513.CrossRefGoogle Scholar
Eachus, R.S., Nuttall, R.H.D., Olm, M.T., McDugle, W.G., Koschnick, F.K., Hangleiter, T. & Spaeth, J.M. (1995). Oxygen defects in BaFBr and BaFCl. Phys Rev B 52, 3941. CrossRefGoogle ScholarPubMed
Edwards, P.R. & Martin, R.W. (2011). Cathodoluminescence nano-characterization of semiconductors. Semicond Sci Tech 26, 064005. CrossRefGoogle Scholar
Falin, M., Bill, H. & Lovy, D. (2004). EPR of Sm3+ in BaFCl single crystals. J Phy Cond Matt 16, 12931298.CrossRefGoogle Scholar
Gacon, J.C., Grenet, G., Souillat, J.C. & Kibler, M. (1978). Experimental and calculated energy levels of Sm2+:BaClF. J Chem Phys 69, 868880.CrossRefGoogle Scholar
Gustafsson, A., Pistol, M.-E., Montelius, L. & Samuelson, L. (1998). Local probe techniques for luminescence studies of low-dimensional semiconductor structures. J Appl Phys 84, 17151775.CrossRefGoogle Scholar
Kalpana, G., Palanivel, B., Shameem Banu, I.B. & Rajagopalan, M. (1997). Structural and electronic properties of alkaline-earth fluorohalides under pressure. Phys Rev B 56, 35323535.CrossRefGoogle Scholar
Liu, Z., Stevens-Kalceff, M.A. & Riesen, H. (2012). Photoluminescence and cathodoluminescence properties of nanocrystalline BaFCl:Sm3+ X-ray storage phosphor. J Phys Chem C 116, 83228331.CrossRefGoogle Scholar
Mikhail, P., Ramseyer, K., Frei, G., Budde, F. & Hulliger, J. (2001). Bleaching of Sm2+ during photoluminescence and cathodoluminescence. Opt Comm 188, 111117.CrossRefGoogle Scholar
Mooradian, A. (1969). Photoluminescence of metals. Phys Rev Lett 22, 185187.CrossRefGoogle Scholar
Niklas, J.R., Heder, G., Yuste, M. & Spaeth, J.M. (1978). Identification of two types of F centres in BaClF by endor. Solid State Commun 26, 169172.CrossRefGoogle Scholar
Norman, C.E. (2001). Investigating inter-well dopant concentration variations in doped MQWs with 20 nm spatial resolution using SEM-CL. Microsc Semiconduct Mater Inst Phys Conf Ser 169, 557560.Google Scholar
Ohnishi, A., Kan'no, K., Iwabuchi, Y. & Mori, N. (1996). Luminescence from self-trapped excitons in BaFCl-BaFBr solid solutions. J Electron Spectrosc 79, 159162.CrossRefGoogle Scholar
Radzhabov, E. (1998). Exciton luminescence in BaFCl crystal. Radiat Meas 29, 311313.CrossRefGoogle Scholar
Radzhabov, E. & Otroshok, V. (1995). Optical spectra of oxygen defects in BaFCl and BaFBr crystals. J Phys Chem Solids 56, 17.CrossRefGoogle Scholar
Radzhabov, E.A. & Egranov, A.V. (1994). Exciton emission in BaFBr and BaFCl crystals. J Phys Cond Matt 6, 5639. CrossRefGoogle Scholar
Riesen, H. & Kaczmarek, W.A. (2005). Radiation storage phosphor & application. International PCT Application WO 2006063409-A1. Google Scholar
Riesen, H. & Kaczmarek, W.A. (2007). Efficient X-ray generation of Sm2+ in nanocrystalline BaFCl/Sm3+: A photoluminescent X-ray storage phosphor. Inorg Chem 46, 72357237.CrossRefGoogle ScholarPubMed
Riesen, H.A., Stevens-Kalceff, M., Liu, Z., Badek, K. & Massil, T. (2010). An efficient optical sensor for ionizing radiation: Nanocrystalline BaFCl:Sm3+. Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), STuB6. CrossRefGoogle Scholar
Schweizer, S., Rogulis, U., Song, K.S. & Spaeth, J.M. (2000). Optically detected magnetic resonance investigations of oxygen luminescence centres in BaFCl. J Phys Cond Matt 12, 62376243.CrossRefGoogle Scholar
Secu, M., Matei, L., Serban, T., Apostol, E., Aldica, G. & Silion, C. (2000). Preparation and optical properties of BaFCl:Eu2+ X-ray storage phosphor. Opt Mater 15, 115122.CrossRefGoogle Scholar
Srivastava, A.M. & Soules, T.F. (2000). Phosphors. In Kirk-Othmer Encyclopedia of Chemical Technology. Hoboken, NJ: John Wiley & Sons, Inc. Google Scholar
Thoms, M., Von Seggern, H. & Winnacker, A. (1991). Spatial correlation and photostimulability of defect centers in the X-ray-storage phosphor BaFBr:Eu2+ . Phys Rev B 44, 9240. CrossRefGoogle ScholarPubMed
Williams, R.T. & Song, K.S. (1990). The self-trapped exciton. J Phys Chem Solids 51, 679.CrossRefGoogle Scholar
Williams, R.T., Song, K.S., Faust, W.L. & Leung, C.H. (1986). Off-center self-trapped excitons and creation of lattice defects in alkali halide crystals. Phys Rev B Cond Matt 33, 72327240.CrossRefGoogle ScholarPubMed
Yacobi, B.G. & Holt, D.B. (1990). Cathodoluminescence Microscopy of Inorganic Solids. New York: Plenum Press.CrossRefGoogle Scholar
Yuste, M., Taurel, L. & Rahmani, M. (1975). ESR and optical study of [Cl−2] centre in BaClF crystal. Solid State Comm 17, 14351438.CrossRefGoogle Scholar