Skip to main content Accessibility help

Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue

  • Jaroslaw Jacak (a1) (a2), Susanne Schaller (a3), Daniela Borgmann (a3) and Stephan M. Winkler (a3)


We here present two new methods for the characterization of fluorescent localization microscopy images obtained from immunostained brain tissue sections. Direct stochastic optical reconstruction microscopy images of 5-HT1A serotonin receptors and glial fibrillary acidic proteins in healthy cryopreserved brain tissues are analyzed. In detail, we here present two image processing methods for characterizing differences in receptor distribution on glial cells and their distribution on neural cells: One variant relies on skeleton extraction and adaptive thresholding, the other on k-means based discrete layer segmentation. Experimental results show that both methods can be applied for distinguishing classes of images with respect to serotonin receptor distribution. Quantification of nanoscopic changes in relative protein expression on particular cell types can be used to analyze degeneration in tissues caused by diseases or medical treatment.


Corresponding author

* Corresponding author.


Hide All
Albert, P.R. & Lemonde, S. (2004). 5-HT1A receptors, gene repression, and depression: Guilt by association. Neuroscientist 10(6), 575593.
Arcelli, C. & Sanniti di Baja, G. (1993). Euclidean skeleton via centre-of-maximal-disc extraction. Image Vision Comput 11(3), 163173.
Babcock, H., Sigal, Y.M. & Zhuang, X. (2012). A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Optical Nanosc 1, 6.
Bao, M., Guo, S., Tang, Q. & Zhang, F. (2009). Optimization of the bwmorph Function in the MATLAB Image Processing Toolbox for Binary Skeleton Computation. International Conference on Computational Intelligence and Natural Computing (CINC '09), Vol. 2.
Baune, B.T., Hohoff, C., Mortensen, L.S., Deckert, J., Arolt, V. & Domschke, K. (2008). Serotonin transporter polymorphism (5-HTTLPR) association with melancholic depression: A female specific effect? Depress Anxiety 25(11), 920925.
Benjamini, Y. & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J Royal Statistical Soc 57(1), 289300.
Betzig, E., Patterson, G.H., Sougrat, R., Lindwasser, O.W., Olenych, S., Bonifacino, J.S., Davidson, M.W., Lippincott-Schwartz, J. & Hess, H.F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 16421645.
Cho, W., Lam, K. & Siu, W. (2003). Extraction of the Euclidean skeleton based on a connectivity criterion. Image Vision Comput 36(3), 721729.
Dani, A., Huang, B., Bergan, J., Dulac, C. & Zhuang, X. (2010). Superresolution imaging of chemical synapses in the brain. Neuron 68(5), 843856.
Davies, D.L. & Bouldin, D.W. (1979). A Cluster Separation Measure. IEEE Trans Pattern Anal Mach Intell 1(2), 224227.
Epanechnikov, V.A. (1969). Non-parametric estimation of a multivariate probability density. Theory Probability Applications 14, 153158.
Haralick, R.M. & Shapiro, L.G. (1993). Computer and Robot Vision. Addison-Wesley, 650pp.
Hess, S.T., Girirajan, T.P. & Mason, M.D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11), 42584272.
Hesse, J., Jacak, J., Kasper, M., Regl, G., Eichberger, T., Winklmayr, M., Aberger, F., Sonnleitner, M., Schlapak, R., Howorka, S., Muresan, L., Frischauf, A.M. & Schütz, G.J. (2006). RNA expression profiling at the single molecule level. Genome Res 16(8), 10411045.
Huang, F., Hartwich, T.M., Rivera-Molina, F.E., Lin, Y., Duim, W.C., Long, J.J., Uchil, P.D., Myers, J.R., Baird, M.A., Mothes, W., Davidson, M.W., Toomre, D. & Bewersdorf, J. (2013). Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods 10(7), 653658.
Jacak, J., Schnidar, H., Muresan, L., Regl, G., Frischauf, A., Aberger, F., Schütz, G.J. & Hesse, J. (2013). Expression analysis of multiple myeloma CD138 negative progenitor cells using single molecule microarray readout. J Biotechnol 164(4), 525530.
Jaccard, P. (1901). Etude comparative de la distribution flora le dans une portion des Alpes et des Jura. Bull Soc Vaud Sci Naturel 37(1), 547579.
Kay, K.R., Smith, C., Wright, A.K., Serrano-Pozo, A., Pooler, A.M., Koffie, R., Bastin, M.E., Bak, T.H., Abrahams, S., Kopeikina, K.J., McGuone, D., Frosch, M.P., Gillingwater, T.H., Hyman, B.T. & Spires-Jones, T.L. (2013). Studying synapses in human brain with array tomography and electron microscopy. Nat Protoc 8(7), 13661380.
Kechkar, A., Nair, D., Heilemann, M., Choquet, D. & Sibarita, J.B. (2013). Real-time analysis and visualization for single-molecule based super-resolution microscopy. PLoS One 8(4), e62918.
Kong, T.Y. & Rosenfeld, A. (1996). Topological Algorithms for Digital Image Processing. Elsevier Science Inc., 302pp.
Lakadamyali, M. (2014). Super-resolution microscopy: Going live and going fast. Chemphyschem 15(4), 630636.
Lam, L., Lee, S.W. & Suen, C.Y. (1992). Thinning methodologies – A Comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9), 879.
Lambe, E.K., Fillman, S.G., Webster, M.J. & Shannon Weickert, C. (2011). Serotonin receptor expression in human prefrontal cortex: Balancing excitation and inhibition across postnatal development. PLoS One 6(7), e22799.
Mortensen, K.I., Churchman, L.S., Spudich, J.A. & Flyvbjerg, H. (2010). Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7(5), 377381.
Muresan, L., Jacak, J., Klement, E.P., Hesse, J. & Schütz, G.J. (2010). Microarray analysis at single-molecule resolution. IEEE Trans Nanobiosci 9(1), 5158.
Nanguneri, S., Flottmann, B., Horstmann, H., Heilemann, M. & Kuner, T. (2012). Three-dimensional, tomographic super-resolution fluorescence imaging of serially Sectioned thick samples. PLoS One 7(5), e38098.
Olivo-Marin, J.C. (2002). Extraction of spots in biological images using multiscale products. Pattern Recognit 35(9), 19891996.
Otsu, N. (1975). A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1), 6266.
Parzen, E. (1962). On estimation of a probability density function and mode. Ann Mathematical Stat 33(3), 1065.
Pratt, W.K. (1991). Digital Image Processing: PIKS Inside, 3rd edition. John Wiley & Sons.
Qian, H., Sheetz, M.P. & Elson, E.L. (1991). Single particle tracking. Analysis of diffusion and flow in two-dimensional systems. Biophys J 60(4), 910921.
Quan, T., Li, P., Long, F., Zeng, S., Luo, Q., Hedde, P.N., Nienhaus, G.U. & Huang, Z.L. (2010). Ultra-fast, high-precision image analysis for localization-based super resolution microscopy. Opt Express 18(11), 1186711876.
Rees, E.J., Erdelyi, M., Pinotsi, D., Knight, A., Metcalf, D. & Kaminski, C.F. (2012). Blind assessment of localization microscope image resolution. Optical Nanosc 1(12), 110.
Rust, M.J., Bates, M. & Zhuang, X. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10), 793795.
Sams, M., Silye, R., Gohring, J., Muresan, L., Schilcher, K. & Jacak, J. (2014). Spatial cluster analysis of nanoscopically mapped serotonin receptors for classification of fixed brain tissue. J Biomed Opt 19(1), 011021.
Savitz, J., Lucki, I. & Drevets, W.C. (2009). 5-HT(1A) receptor function in major depressive disorder. Prog Neurobiol 88(1), 1731.
Saxton, M.J. (1994). Single-particle tracking: models of directed transport. Biophys J 67(5), 21102119.
Schoen, I., Ries, J., Klotzsch, E., Ewers, H. & Vogel, V. (2011). Binding-activated localization microscopy of DNA structures. Nano Lett 11(9), 40084011.
Schütz, G.J., Schindler, H. & Schmidt, T. (1997). Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73(2), 10731080.
Shim, S.H., Xia, C., Zhong, G., Babcock, H.P., Vaughan, J.C., Huang, B., Wang, X., Xu, C., Bi, G.Q. & Zhuang, X. (2012). Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc Natl Acad Sci USA 109(35), 1397813983.
Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. (2008 a). Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5), 417423.
Shroff, H., White, H. & Betzig, E. (2008 b). Photoactivated localization microscopy (PALM) of adhesion complexes, Chapter 4, Curr Protoc Cell Biol, Unit 4, p. 21.
Sinko, J., Kakonyi, R., Rees, E., Metcalf, D., Knight, A.E., Kaminski, C.F., Szabo, G. & Erdelyi, M. (2014). TestSTORM: Simulator for optimizing sample labeling and image acquisition in localization based super-resolution microscopy. Biomed Opt Express 5(3), 778787.
Starck, J.L., Fadili, J. & Murtagh, F. (2007). The undecimated wavelet decomposition and its reconstruction. IEEE Trans Image Process 16(2), 297309.
Thompson, R.E., Larson, D.R. & Webb, W.W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5), 27752783.
Tokunaga, M., Imamoto, N. & Sakata-Sogawa, K. (2008). Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2), 159161.
van de Linde, S., Sauer, M. & Heilemann, M. (2008). Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J Struct Biol 164(3), 250254.
Wieser, S. & Schütz, G.J. (2008). Tracking single molecules in the live cell plasma membrane – Do’s and Don’t’s. Methods 46(2), 131140.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Jacak supplementary material
Figure S1

 Unknown (22.7 MB)
22.7 MB
Supplementary materials

Jacak supplementary material
Figure S2

 Unknown (1.2 MB)
1.2 MB

Characterization of the Distance Relationship Between Localized Serotonin Receptors and Glia Cells on Fluorescence Microscopy Images of Brain Tissue

  • Jaroslaw Jacak (a1) (a2), Susanne Schaller (a3), Daniela Borgmann (a3) and Stephan M. Winkler (a3)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.