Skip to main content

Correlating Atom Probe Tomography with Atomic-Resolved Scanning Transmission Electron Microscopy: Example of Segregation at Silicon Grain Boundaries

  • Andreas Stoffers (a1) (a2), Juri Barthel (a3) (a4), Christian H. Liebscher (a2), Baptiste Gault (a2), Oana Cojocaru-Mirédin (a1) (a2), Christina Scheu (a2) and Dierk Raabe (a2)...

In the course of a thorough investigation of the performance-structure-chemistry interdependency at silicon grain boundaries, we successfully developed a method to systematically correlate aberration-corrected scanning transmission electron microscopy and atom probe tomography. The correlative approach is conducted on individual APT and TEM specimens, with the option to perform both investigations on the same specimen in the future. In the present case of a Σ9 grain boundary, joint mapping of the atomistic details of the grain boundary topology, in conjunction with chemical decoration, enables a deeper understanding of the segregation of impurities observed at such grain boundaries.

Corresponding author
* Corresponding author.
Hide All
Babinsky, K., De Kloe, R., Clemens, H. & Primig, S. (2014). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy 144, 918.
Batson, P.E., Dellby, N. & Krivanek, O.L. (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.
Blavette, D., Wang, H., Bonvalet, M., Hüe, F. & Duguay, S. (2014). Atom-probe tomography study of boron precipitation in highly implanted silicon. Phys Status Solidi A 211(1), 126130.
Brandon, D.G. (1966). Structure of high-angle grain boundaries. Acta Metall 14(11), 14791484.
Cojocaru-Mirédin, O., Mangelinck, D. & Blavette, D. (2009). Nucleation of boron clusters in implanted silicon. J Appl Phys 106(11), 113525.
Couillard, M., Radtke, G. & Botton, G.A. (2013). Strain fields around dislocation arrays in a Σ9 silicon bicrystal measured by scanning transmission electron microscopy. Philos Mag 93(10–12), 12501267.
Dabrowski, J. & Müssig, H.-J. (2000). Silicon Surfaces and Formation of Interfaces: Basic Science in the Industrial World. World Scientific, Singapore.
Di Sabatino, M. & Stokkan, G. (2013). Defect generation, advanced crystallization, and characterization methods for high-quality solar-cell silicon. Phys Status Solidi A 210(4), 641648.
Felfer, P.J., Alam, T., Ringer, S.P. & Cairney, J.M. (2012). A reproducible method for damage-free site-specific preparation of atom probe tips from interfaces. Microsc Res Tech 75(4), 484491.
Herbig, M., Choi, P. & Raabe, D. (2015). Combining structural and chemical information at the nanometer scale by correlative transmission electron microscopy and atom probe tomography. Ultramicroscopy 153(0), 3239.
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S. & Goto, S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112(12), 126103.
Istratov, A.A., Buonassisi, T., McDonald, R.J., Smith, A.R., Schindler, R., Rand, J.A., Kalejs, J.P. & Weber, E.R. (2003). Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length. J Appl Phys 94(10), 65526559.
Käshammer, P. & Sinno, T. (2015). A mechanistic study of impurity segregation at silicon grain boundaries. J Appl Phys 118(9), 095301.
Krakauer, B.W. & Seidman, D.N. (1993). Absolute atomic-scale measurements of the Gibbsian interfacial excess of solute at internal interfaces. Phys Rev B 48(9), 67246727.
Kuzmina, M., Herbig, M., Ponge, D., Sandlöbes, S. & Raabe, D. (2015). Linear complexions: Confined chemical and structural states at dislocations. Science 349(6252), 10801083.
Kveder, V., Kittler, M. & Schröter, W. (2001). Recombination activity of contaminated dislocations in silicon: A model describing electron-beam-induced current contrast behavior. Phys Rev B 63(11), 115208.
Langford, R., Huang, Y., Lozano-Perez, S., Titchmarsh, J. & Petford-Long, A. (2001). Preparation of site specific transmission electron microscopy plan-view specimens using a focused ion beam system. J Vac Sci Technol B 19(3), 755758.
Lefebvre, W., Hernandez-Maldonado, D., Moyon, F., Cuvilly, F., Vaudolon, C., Shinde, D. & Vurpillot, F. (2015). HAADF–STEM atom counting in atom probe tomography specimens: Towards quantitative correlative microscopy. Ultramicroscopy 159((Pt 2), 403412.
Ohno, Y., Inoue, K., Tokumoto, Y., Kutsukake, K., Yonenaga, I., Ebisawa, N., Takamizawa, H., Shimizu, Y., Inoue, K., Nagai, Y., Yoshida, H. & Takeda, S. (2013). Three-dimensional evaluation of gettering ability of Sigma 3{111} grain boundaries in silicon by atom probe tomography combined with transmission electron microscopy. Appl Phys Lett 103(10), 102102.
Philippe, T., De Geuser, F., Duguay, S., Lefebvre, W., Cojocaru-Mirédin, O., Da Costa, G. & Blavette, D. (2009). Clustering and nearest neighbour distances in atom-probe tomography. Ultramicroscopy 109(10), 13041309.
Pizzini, S., Acciarri, M. & Binetti, S. (2005). From electronic grade to solar grade silicon: Chances and challenges in photovoltaics. Phys Status Solidi A 202(15), 29282942.
Riepe, S., Reis, I.E., Kwapil, W., Falkenberg, M.A., Schön, J., Behnken, H., Bauer, J., Kreßner-Kiel, D., Seifert, W. & Koch, W. (2011). Research on efficiency limiting defects and defect engineering in silicon solar cells—results of the German research cluster SolarFocus. Phys Status Solidi C 8(3), 733738.
Rigutti, L., Blum, I., Shinde, D., Hernández-Maldonado, D., Lefebvre, W., Houard, J., Vurpillot, F., Vella, A., Tchernycheva, M., Durand, C., Eymery, J. & Deconihout, B. (2014). Correlation of microphotoluminescence spectroscopy, scanning transmission electron microscopy, and atom probe tomography on a single nano-object containing an InGaN/GaN multiquantum well system. Nano Lett 14(1), 107114.
Schaffer, M., Schaffer, B. & Ramasse, Q. (2012). Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy 114, 6271.
Stoffers, A., Cojocaru-Mirédin, O., Seifert, W., Zaefferer, S., Riepe, S. & Raabe, D. (2015 a). Grain boundary segregation in multicrystalline silicon: correlative characterization by EBSD, EBIC, and atom probe tomography. Prog Photovolt Res Appl 23(12), 17421753.
Stoffers, A., Ziebarth, B., Barthel, J., Cojocaru-Mirédin, O., Elsässer, C. & Raabe, D. (2015 b). Complex nanotwin substructure of an asymmetric Σ9 tilt grain boundary in a silicon polycrystal. Phys Rev Lett 115(23), 235502.
Thompson, K., Booske, J.H., Larson, D.J. & Kelly, T.F. (2005). Three-dimensional atom mapping of dopants in Si nanostructures. Appl Phys Lett 87(5), 052108.
Thompson, K., Flaitz, P.L., Ronsheim, P., Larson, D.J. & Kelly, T.F. (2007 a). Imaging of arsenic cottrell atmospheres around silicon defects by three-dimensional atom probe tomography. Science 317(5843), 13701374.
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007 b). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107(2–3), 131139.
Thuvander, M., Stiller, K., Blavette, D. & Menand, A. (1996). Grain boundary precipitation and segregation in Ni·16Cr·9Fe model materials. Appl Surf Sci 94, 343350.
Weber, J., Barthel, J., Brandt, F., Klinkenberg, M., Breuer, U., Kruth, M. & Bosbach, D. (2016). Nano-structural features of barite crystals observed by electron microscopy and atom probe tomography. Chem Geol 424, 5159.
Ziebarth, B., Mrovec, M., Elsässer, C. & Gumbsch, P. (2015). Interstitial iron impurities at grain boundaries in silicon: A first-principles study. Phys Rev B 91(3), 035309.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed