Skip to main content
×
Home
    • Aa
    • Aa

Data Processing for Atomic Resolution Electron Energy Loss Spectroscopy

  • Paul Cueva (a1), Robert Hovden (a1), Julia A. Mundy (a1), Huolin L. Xin (a2) and David A. Muller (a1) (a3)...
Abstract
Abstract

The high beam current and subangstrom resolution of aberration-corrected scanning transmission electron microscopes has enabled electron energy loss spectroscopy (EELS) mapping with atomic resolution. These spectral maps are often dose limited and spatially oversampled, leading to low counts/channel and are thus highly sensitive to errors in background estimation. However, by taking advantage of redundancy in the dataset map, one can improve background estimation and increase chemical sensitivity. We consider two such approaches—linear combination of power laws and local background averaging—that reduce background error and improve signal extraction. Principal component analysis (PCA) can also be used to analyze spectrum images, but the poor peak-to-background ratio in EELS can lead to serious artifacts if raw EELS data are PCA filtered. We identify common artifacts and discuss alternative approaches. These algorithms are implemented within the Cornell Spectrum Imager, an open source software package for spectroscopic analysis.

Copyright
Corresponding author
Corresponding author. E-mail: rmh244@cornell.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P.E. Batson , N. Dellby & O.L. Krivanek (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418, 617620.

N. Bonnet (1999). Extracting information from sequences of spatially resolved EELS spectra using multivariate statistical analysis. Ultramicroscopy 77(3-4), 97112.

M. Bosman , V. Keast , J. Garcia-Munoz , S. Findlay & L. Allen (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99(8), 86102.

M. Bosman , M. Watanabe , D.T.L. Alexander & V.J. Keast (2006). Mapping chemical and bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106(11-12), 2432.

G. A. Botton , S. Lazar & C. Dwyer (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110(8), 926934.

R. Egerton (2002). Improved background-fitting algorithms for ionization edges in electron energy-loss spectra. Ultramicroscopy 92(2), 4756.

R.F. Egerton (1975). Inelastic-cattering of 80 kev electrons in amorphous carbon. Philos Mag 31(1), 199215.

R.F. Egerton (1982). A revised expression for signal/noise ratio in EELS. Ultramicroscopy 9, 387390.

R.F. Egerton (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. Boston, MA: Springer US.

J. Friedman (1989). Regularized discriminant analysis. J Am Stat Assoc 84(405), 165175.

D.M. Haaland , H.D.T. Jones , M.H. Van Benthem , M.B. Sinclair , D.K. Melgaard , C.L. Stork , M.C. Pedroso , P. Liu , A.R. Brasier , N.L. Andrews & D.S. Lidke (2009). Hyperspectral confocal fluorescence imaging: Exploring alternative multivariate curve resolution approaches. Appl Spectrosc 63(3), 271279.

J.A. Hunt & D.B. Williams (1991). Electron energy-loss spectrum-imaging. Ultramicroscopy 38(1), 4773.

C. Jeanguillaume & C. Colliex (1989). Spectrum-image: The next step in EELS digital acquisition and processing. Ultramicroscopy 28(1-4), 252257.

D.C. Joy & D.M. Maher (1981). The quantitation of electron energy loss spectra. J Microsc 124, 3748.

M.R. Keenan & P.G. Kotula (2004). Accounting for Poisson noise in the multivariate analysis of ToF-SIMS spectrum images. Surf Interf Anal 36(3), 203212.

O.L. Krivanek , G.J. Corbin , N. Dellby , B.F. Elston , R.J. Keyse , M.F. Murfitt , C.S. Own , Z.S. Szilagyi & J.W. Woodruff (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108(3), 179195.

D.R. Liu & L.M. Brown (1987). Influence of some practical factors on background extrapolation in EELS quantification. J Microsc 147, 3749.

D.A. Muller (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8(4), 263270.

D.A. Muller , L. Fitting Kourkoutis , M. Murfitt , J.H. Song , H.Y. Hwang , J. Silcox , N. Dellby & O.L. Krivanek (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319(5866), 10731076.

K. Pearson (1901). On lines and planes of closest fit to systems of points in space. Philos Mag 2(6), 559572.

T. Pun , J. Ellis & M. Eden (1985). Weighted least squares estimation of background in EELS imaging. J Microsc 137, 93100.

P. Trebbia & N. Bonnet (1990). EELS elemental mapping with unconventional methods, I. Theoretical basis: Image analysis with multivariate statistics and entropy concepts. Ultramicroscopy 34, 165178.

J. Verbeeck & S. Van Aert (2004). Model based quantification of EELS spectra. Ultramicroscopy 101(2-4), 207224.

J.A. Victoreen (1943). Probable X-ray mass absorption coefficients for wave-lengths shorter than the K critical absorption wave-length. J Appl Phys 14(2), 95102.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 93 *
Loading metrics...

Abstract views

Total abstract views: 274 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th April 2017. This data will be updated every 24 hours.