Skip to main content
×
Home
    • Aa
    • Aa

Density Functional Theory Modeling of Low-Loss Electron Energy-Loss Spectroscopy in Wurtzite III-Nitride Ternary Alloys

  • Alberto Eljarrat (a1), Xavier Sastre (a1), Francesca Peiró (a1) and Sónia Estradé (a1)
Abstract
Abstract

In the present work, the dielectric response of III-nitride semiconductors is studied using density functional theory (DFT) band structure calculations. The aim of this study is to improve our understanding of the features in the low-loss electron energy-loss spectra of ternary alloys, but the results are also relevant to optical and UV spectroscopy results. In addition, the dependence of the most remarkable features with composition is tested, i.e. applying Vegard’s law to band gap and plasmon energy. For this purpose, three wurtzite ternary alloys, from the combination of binaries AlN, GaN, and InN, were simulated through a wide compositional range (i.e., Al x Ga1−x N, In x Al1−x N, and In x Ga1−x N, with x=[0,1]). For this DFT calculations, the standard tools found in Wien2k software were used. In order to improve the band structure description of these semiconductor compounds, the modified Becke–Johnson exchange–correlation potential was also used. Results from these calculations are presented, including band structure, density of states, and complex dielectric function for the whole compositional range. Larger, closer to experimental values, band gap energies are predicted using the novel potential, when compared with standard generalized gradient approximation. Moreover, a detailed analysis of the collective excitation features in the dielectric response reveals their compositional dependence, which sometimes departs from a linear behavior (bowing). Finally, an advantageous method for measuring the plasmon energy dependence from these calculations is explained.

Copyright
Corresponding author
* Corresponding author. aeljarrat@el.ub.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

H. Amari , H. Zhang , L. Geelhaar , C. Chèze , M. Kappers & T. Walther (2011). Nanoscale EELS analysis of elemental distribution and band-gap properties in AlGaN epitaxial layers. J Phys Conf Ser 326, 012039.

C. Ambrosch-Draxl & J.O. Sofo (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175(1), 114.

Z. Dridi , B. Bouhafs & P. Ruterana (2003). First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN, InxAl1−xN. Semicond Sci Technol 18(9), 850.

R. F. Egerton (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. 3rd edition. Springer USA, New York.

A. Eljarrat , S. Estradé , Z. Gačević , S. Fernández-Garrido , E. Calleja , C. Magén & F. Peiró (2012). Optoelectronic properties of InAlN/GaN distributed Bragg reflector heterostructure examined by valence electron energy loss spectroscopy. Microsc Microanal 18, 11431154.

A. Eljarrat , L. López-Conesa , C. Magén , Z. Gačević , S. Fernández-Garrido , E. Calleja , S. Estradé & F. Peiró (2013). Insight into the compositional and structural nano features of AlN/GaN DBRs by EELS-HAADF. Microsc Microanal 19(3), 698705.

P. Hohenberg & W. Kohn (1964). Inhomogeneous electron gas. Phys Rev 136, B864B871.

D. Holec , P. Costa , P. Cherns & C. Humphreys (2008 b). A theoretical study of {ELNES} spectra of AlxGa1xN using Wien2k and Telnes programs. Comput Mater Sci 44(1), 9196.

E. Iliopoulos , A. Adikimenakis , C. Giesen , M. Heuken & A. Georgakilas (2007). Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry. Appl Phys Lett 92, 191907191910.

H. Jiang (2013). Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation. J Chem Phys 138(13), 134115.

V. Keast (2005). Ab initio calculations of plasmons and interband transitions in the low-loss electron energy-loss spectrum. J Electron Spectros Relat Phenomena 143, 97104.

V. Keast (2013). An introduction to the calculation of valence EELS: Quantum mechanical methods for bulk solids. Micron 44, 93100.

V. Keast & M. Bosman (2008). Applications and theoretical simulation of low-loss electron energy-loss spectra. Mater Sci Technol 24(6), 651659.

V.J. Keast , M.J. Kappers & C.J. Humphreys (2003). Electron energy-loss near edge structure (ELNES) of InGaN quantum wells. J Microsc 210(1), 8993.

V.J. Keast , A.J. Scott , M.J. Kappers , C.T. Foxon & C.J. Humphreys (2002). Electronic structure of GaN and InxGa1−xN measured with electron energy-loss spectroscopy. Phys Rev B 66, 125319.

W. Kohn & L.J. Sham (1965). Self-consistent equations including exchange and correlation effects. Phys Rev 140, A1133A1138.

A. Kokalj (2003). Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci 28, 155168.

D. Koller , F. Tran & P. Blaha (2011). Merits and limits of the modified Becke-Johnson exchange potential. Phys Rev B 83, 195134.

A. Laref , A. Altujar & S. Luo (2013). The electronic and optical properties of InGaN-based solar cells alloys: First-principles investigations via mBJLDA approach. Eur Phys J B 86(11), 475486.

A. Letrouit , S. Kret , F. Ivaldi , J.F. Carlin , N.A.K. Kaufman , N. Grandjean & J. Góreka (2012). Low loss EEL spectroscopy performed on InxA1−xN layers grown by MOVPE: Comparison between experiment and ab-initio calculations. Phys Status Solidi C 9(3–4), 989992.

J. Palisaitis , C.-L. Hsiao , M. Junaid , J. Birch , L. Hultman & P.O.A. Persson (2011 a). Effect of strain on low-loss electron energy loss spectra of group-III nitrides. Phys Rev B 84, 245301.

J. Palisaitis , C.-L. Hsiao , M. Junaid , M. Xie , V. Darakchieva , J.-F. Carlin , N. Grandjean , J. Birch , L. Hultman & P.O.A. Persson (2011 b). Standard-free composition measurements of AlxIn1−xN by low-loss electron energy loss spectroscopy. Phys Status Solidi Rapid Res Lett 5(2), 5052.

J.P. Perdew , K. Burke & M. Ernzerhof (1996). Generalized gradient approximation made simple. Phys Rev Lett 77, 38653868.

P.L. Potapov , H.-J. Engelmann , E. Zschech & M. Stöger-Pollach (2009). Measuring the dielectric constant of materials from valence EELS. Micron 40(2), 262268.

R. Ritchie (1957). Plasma losses by fast electrons in thin films. Phys Rev 106(5), 874.

M. Soumelidou , J. Kioseoglou , H. Kirmse , T. Karakostas & P. Komninou (2013). Electron energy loss near edge structure of InxAl1−xN alloys. Microelectron Eng 112, 198203.

M. Stöger-Pollach (2008). Optical properties and bandgaps from low loss EELS: Pitfalls and solutions. Micron 39(8), 10921110.

D.M. Teter , G.V. Gibbs , M.B. Boisen , D.C. Allan & M.P. Teter (1995). First-principles study of several hypothetical silica framework structures. Phys Rev B 52, 80648073.

F. Tran & P. Blaha (2009). Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102, 226401.

B. Ul Haq , R. Ahmed , A. Shaari , F. El Haj Hassan , M. Benali Kanoun & S. Goumri-Said (2014). Study of wurtzite and zincblende GaN/InN based solar cells alloys: First-principles investigation within the improved modified Becke-Johnson potential. Solar Energy 107, 543552.

I. Vurgaftman , J.R. Meyer & L.R. Ram-Mohan (2001). Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 89(11), 58155875.

Y. Wang & J.P. Perdew (1991). Spin scaling of the electron-gas correlation energy in the high-density limit. Phys Rev B 43, 89118916.

P. Yu & M. Cardona (2010). Fundamentals of Semiconductors: Physics and Materials Properties. Graduate Texts in Physics. New York: Springer.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
UNKNOWN
Supplementary Materials

Eljarrat supplementary material
Eljarrat supplementary material 1

 Unknown (1.4 MB)
1.4 MB

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 115 *
Loading metrics...

Abstract views

Total abstract views: 421 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd August 2017. This data will be updated every 24 hours.