Skip to main content Accessibility help

Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues with Two-Photon Microscopy

  • Joseph T. Keyes (a1), Stacy M. Borowicz (a2), Jacob H. Rader (a2), Urs Utzinger (a1) (a3) (a4), Mohamad Azhar (a3) (a5) and Jonathan P. Vande Geest (a1) (a2) (a3) (a4)...


The biomechanical response of tissues serves as a valuable marker in the prediction of disease and in understanding the related behavior of the body under various disease and age states. Alterations in the macroscopic biomechanical response of diseased tissues are well documented; however, a thorough understanding of the microstructural events that lead to these changes is poorly understood. In this article we introduce a novel microbiaxial optomechanical device that allows two-photon imaging techniques to be coupled with macromechanical stimulation in hydrated planar tissue specimens. This allows that the mechanical response of the microstructure can be quantified and related to the macroscopic response of the same tissue sample. This occurs without the need to fix tissue in strain states that could introduce a change in the microstructural configuration. We demonstrate the passive realignment of fibrous proteins under various types of loading, which demonstrates the ability of tissue microstructure to reinforce itself in periods of high stress. In addition, the collagen and elastin response of tissue during viscoelastic behavior is reported showing interstitial fluid movement and fiber realignment potentially responsible for the temporal behavior. We also demonstrate that nonhomogeneities in fiber strain exist over biaxial regions of assumed homogeneity.


Corresponding author

Corresponding author. E-mail:


Hide All
Azhar, M., Yin, M., Bommireddy, R., Duffy, J.J., Yang, J., Pawlowski, S.A., Boivin, G.P., Engle, S.J., Sanford, L.P., Grisham, C., Singh, R.R., Babcock, G.F. & Doetschman, T. (2009). Generation of mice with a conditional allele for transforming growth factor beta 1 gene. Genesis 47(6), 423431.
Bell, J.P.-P.a.P.D. (2008). Confocal and two-photon microscopy. In Methods in Molecular Medicine, vol. 86: Renal Disease: Techniques and Protocols, I, Humana Press (Ed.), pp. 129138. Berlin, New York: Springer.
Bhatia, A. & Vesely, I. (2005). The effect of glycosaminoglycans and hydration on the viscoelastic properties of aortic valve cusps. Conf Proc IEEE Eng Med Biol Soc 3, 29792980.
Billiar, K.L. & Sacks, M.S. (1997). A method to quantify the fiber kinematics of planar tissues under biaxial stretch. J Biomech 30(7), 753756.
Boulesteix, T., Pena, A.M., Pages, N., Godeau, G., Sauviat, M.P., Beaurepaire, E. & Schanne-Klein, M.C. (2006). Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure. Cytometry A 69(1), 2026.
Cox, G., Kable, E., Jones, A., Fraser, I., Manconi, F. & Gorrell, M.D. (2003). 3-dimensional imaging of collagen using second harmonic generation. J Struct Biol 141(1), 5362.
Debes, J.C. & Fung, Y.C. (1995). Biaxial mechanics of excised canine pulmonary arteries. Am J Physiol 269(2 Pt 2), H433H442.
DiSilvestro, M.R. & Suh, J.K. (2002). Biphasic poroviscoelastic characteristics of proteoglycan-depleted articular cartilage: Simulation of degeneration. Ann Biomed Eng 30(6), 792800.
Driessen, N.J., Boerboom, R.A., Huyghe, J.M., Bouten, C.V. & Baaijens, F.P. (2003). Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng 125(4), 549557.
Eberl, C., Gianola, D.S. & Thompson, R. (2006). Matlab central. In File ID: 12413, I. Natick, MA: The Mathworks, Inc.
Eshel, H. & Lanir, Y. (2001). Effects of strain level and proteoglycan depletion on preconditioning and viscoelastic responses of rat dorsal skin. Ann Biomed Eng 29(2), 164172.
Fung, Y. (1993). Biomechanics: Mechanical Properties of Living Tissues. New York: Springer.
Fung, Y.C. & Liu, S.Q. (1995). Determination of the mechanical properties of the different layers of blood vessels in vivo. Proc Natl Acad Sci USA 92(6), 21692173.
Gianola, D.S. & Eberl, C. (2009). Micro- and nanoscale tensile testing of materials. JOM—J Min Met Mat Soc 61(3), 2435.
Gleason, R.L., Gray, S.P., Wilson, E. & Humphrey, J.D. (2004). A multiaxial computer-controlled organ culture and biomechanical device for mouse carotid arteries. J Biomech Eng 126(6), 787795.
Halloran, B.G., Davis, V.A., McManus, B.M., Lynch, T.G. & Baxter, B.T. (1995). Localization of aortic disease is associated with intrinsic differences in aortic structure. J Surg Res 59(1), 1722.
Hariton, I., de Botton, G., Gasser, T.C. & Holzapfel, G.A. (2007a). Stress-driven collagen fiber remodeling in arterial walls. Biomech Model Mechanobiol 6(3), 163175.
Hariton, I., de Botton, G., Gasser, T.C. & Holzapfel, G.A. (2007b). Stress-modulated collagen fiber remodeling in a human carotid bifurcation. J Theor Biol 248(3), 460470.
Haskett, D., Johnson, G., Zhou, A., Utzinger, U. & Vande Geest, J. (2010). Microstructural and biomechanical alterations of the human aorta as a function of age and location. Biomech Model Mechanobiol 9(6), 725736.
Hepworth, D.G., Steven-Fountain, A., Bruce, D.M. & Vincent, J.F. (2001). Affine versus non-affine deformation in soft biological tissues, measured by the reorientation and stretching of collagen fibres through the thickness of compressed porcine skin. J Biomech 34(3), 341346.
Hu, J.J., Humphrey, J.D. & Yeh, A.T. (2009). Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng Part A 15(7), 15531564.
Humphrey, J.D. (2001). Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer.
Humphrey, J.D., Vawter, D.L. & Vito, R.P. (1987). Quantification of strains in biaxially tested soft tissues. J Biomech 20(1), 5965.
Humphrey, J.D., Wells, P.B., Baek, S., Hu, J.J., McLeroy, K. & Yeh, A.T. (2008). A theoretically-motivated biaxial tissue culture system with intravital microscopy. Biomech Model Mechanobiol 7(4), 323334.
Jani, B. & Rajkumar, C. (2006). Ageing and vascular ageing. Postgrad Med J 82(968), 357362.
Kirkpatrick, N.D., Andreou, S., Hoying, J.B. & Utzinger, U. (2007). Live imaging of collagen remodeling during angiogenesis. Am J Physiol Heart Circ Physiol 292(6), H3198H3206.
Labropoulos, N., Ashraf Mansour, M., Kang, S.S., Oh, D.S., Buckman, J. & Baker, W.H. (2000). Viscoelastic properties of normal and atherosclerotic carotid arteries. Eur J Vasc Endovasc Surg 19(3), 221225.
Lillie, M.A. & Gosline, J.M. (2007). Limits to the durability of arterial elastic tissue. Biomaterials 28(11), 20212031.
Lipman, R.D., Grossman, P., Bridges, S.E., Hamner, J.W. & Taylor, J.A. (2002). Mental stress response, arterial stiffness, and baroreflex sensitivity in healthy aging. J Gerontol A Biol Sci Med Sci 57(7), B279B284.
Mase, G.T. & Mase, G.E. (1999). Continuum Mechanics for Engineers, Second Edition. Boca Raton, FL: CRC Press.
Nishijo, N., Sugiyama, F., Kimoto, K., Taniguchi, K., Murakami, K., Suzuki, S., Fukamizu, A. & Yagami, K. (1998). Salt-sensitive aortic aneurysm and rupture in hypertensive transgenic mice that overproduce angiotensin II. Lab Invest 78(9), 10591066.
Okamoto, R.J., Wagenseil, J.E., DeLong, W.R., Peterson, S.J., Kouchoukos, N.T. & Sundt, T.M. 3rd. (2002). Mechanical properties of dilated human ascending aorta. Ann Biomed Eng 30(5), 624635.
Roeder, B.A., Kokini, K., Sturgis, J.E., Robinson, J.P. & Voytik-Harbin, S.L. (2002). Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng 124(2), 214222.
Sacks, M.S., Merryman, W.D. & Schmidt, D.E. (2009). On the biomechanics of heart valve function. J Biomech 42(12), 18041824.
Safar, M.E., Blacher, J., Mourad, J.J. & London, G.M. (2000). Stiffness of carotid artery wall material and blood pressure in humans: Application to antihypertensive therapy and stroke prevention. Stroke 31(3), 782790.
Sokolis, D.P. (2008). Passive mechanical properties and constitutive modeling of blood vessels in relation to microstructure. Med Biol Eng Comput 46(12), 11871199.
Stella, J.A., Liao, J., Hong, Y., Merryman, W.D., Wagner, W.R. & Sacks, M.S. (2008). Tissue-to-cellular level deformation coupling in cell micro-integrated elastomeric scaffolds. Biomaterials 29(22), 32283236.
Timmins, L.H., Wu, Q., Yeh, A.T., Moore, J.E. Jr. & Greenwald, S.E. (2010). Structural inhomogeneity and fiber orientation in the inner arterial media. Am J Physiol Heart Circ Physiol 298(5), H1537H1545.
Vande Geest, J.P., Sacks, M.S. & Vorp, D.A. (2004). Age dependency of the biaxial biomechanical behavior of human abdominal aorta. J Biomech Eng 126(6), 815822.
Vande Geest, J.P., Sacks, M.S. & Vorp, D.A. (2006). The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J Biomech 39(7), 13241334.
Voytik-Harbin, S.L., Roeder, B.A., Sturgis, J.E., Kokini, K. & Robinson, J.P. (2003). Simultaneous mechanical loading and confocal reflection microscopy for three-dimensional microbiomechanical analysis of biomaterials and tissue constructs. Microsc Microanal 9(1), 7485.
Zhang, W., Liu, Y. & Kassab, G.S. (2007). Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: Implications for vessel fatigue. Am J Physiol Heart Circ Physiol 293(4), H2355H2360.
Zoumi, A., Lu, X., Kassab, G.S. & Tromberg, B.J. (2004). Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 87(4), 27782786.
Zoumi, A., Yeh, A. & Tromberg, B.J. (2002). Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc Natl Acad Sci USA 99(17), 1101411019.


Design and Demonstration of a Microbiaxial Optomechanical Device for Multiscale Characterization of Soft Biological Tissues with Two-Photon Microscopy

  • Joseph T. Keyes (a1), Stacy M. Borowicz (a2), Jacob H. Rader (a2), Urs Utzinger (a1) (a3) (a4), Mohamad Azhar (a3) (a5) and Jonathan P. Vande Geest (a1) (a2) (a3) (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed