Skip to main content
×
Home
    • Aa
    • Aa

Determining On-Axis Crystal Thickness with Quantitative Position-Averaged Incoherent Bright-Field Signal in an Aberration-Corrected STEM

  • Huolin L. Xin (a1), Ye Zhu (a2) and David A. Muller (a2) (a3)
Abstract
Abstract

An accurate determination of specimen thickness is essential for quantitative analytical electron microscopy. Here we demonstrate that a position-averaged incoherent bright-field signal recorded on an absolute scale can be used to determine the thickness of on-axis crystals with a precision of ±1.6 nm. This method measures both the crystalline and the noncrystalline parts (surface amorphous layers) of the sample. However, it avoids the systematic error resulting from surface plasmon contributions to the inelastic mean-free-path thickness estimated by electron energy loss spectroscopy.

Copyright
Corresponding author
Corresponding author. E-mail: hx35@cornell.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Borisevich , O.S. Ovchinnikov , H.J. Chang , M.P. Oxley , P. Yu , J. Seidel , E.A. Eliseev , A.N. Morozovska , R. Ramesh , S.J. Pennycook & S.V. Kalinin (2010). Mapping octahedral tilts and polarization across a domain wall in BiFeO3 from Z-contrast scanning transmission electron microscopy image atomic column shape analysis. ACS Nano 4(10), 60716079.

M. Bosman , V. Keast , J. García-Muñoz , A. D'Alfonso , S. Findlay & L. Allen (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99(8), 086102.

G.A. Botton , S. Lazar & C. Dwyer (2010). Elemental mapping at the atomic scale using low accelerating voltages. Ultramicroscopy 110(8), 926934.

A.V. Crewe , J. Wall & J. Langmore (1970). Visibility of single atoms. Science 168(3937), 13381340.

R.F. Egerton (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer.

P. Ercius , M. Weyland , D.A. Muller & L.M. Gignac (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.

L. Fitting , S. Thiel , A. Schmehl , J. Mannhart & D.A. Muller (2006). Subtleties in ADF imaging and spatially resolved EELS: A case study of low-angle twist boundaries in SrTiO3. Ultramicroscopy 106(11-12), 10531061.

P. Hartel , H. Rose & C. Dinges (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63(2), 93114.

S. Hillyard , R.F. Loane & J. Silcox (1993). Annular dark-field imaging: Resolution and thickness effects. Ultramicroscopy 49, 1425.

S. Hillyard & J. Silcox (1993). Thickness effects in ADF STEM zone axis images. Ultramicroscopy 52(3-4), 325334.

A. Howie (1979). Image-contrast and localized signal selection techniques. J Microsc-Oxf 117(Sep), 1123.

E.J. Kirkland (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.

E.J. Kirkland (2010). Advanced Computing in Electron Microscopy. New York: Springer Verlag.

E.J. Kirkland , R.F. Loane & J. Silcox (1987). Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 23(1), 7796.

D. Klenov , S. Findlay , L. Allen & S. Stemmer (2007). Influence of orientation on the contrast of high-angle annular dark-field images of silicon. Phys Rev B 76(1), 014111.

L.F. Kourkoutis , M. Parker , V. Vaithyanathan , D. Schlom & D. Muller (2011). Direct measurement of electron channeling in a crystal using scanning transmission electron microscopy. Phys Rev B 84(7), 075485.

L.F. Kourkoutis , H. Xin , T. Higuchi , Y. Hotta , J. Lee , Y. Hikita , D. Schlom , H. Hwang & D. Muller (2010). Atomic-resolution spectroscopic imaging of oxide interfaces. Philos Mag 90(35-36), 47314749.

O.L. Krivanek , M.F. Chisholm , V. Nicolosi , T.J. Pennycook , G.J. Corbin , N. Dellby , M.F. Murfitt , C.S. Own , Z.S. Szilagyi , M.P. Oxley , S.T. Pantelides & S.J. Pennycook (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464(7288), 571574.

J. LeBeau , S. Findlay , X. Wang , A. Jacobson , L. Allen & S. Stemmer (2009). High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment. Phys Rev B 79(21), 214110.

J.M. LeBeau , S.D. Findlay , L.J. Allen & S. Stemmer (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100(20), 206101.

J.M. LeBeau , S.D. Findlay , L.J. Allen & S. Stemmer (2010a). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.

J.M. LeBeau , S.D. Findlay , L.J. Allen & S. Stemmer (2010b). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.

J.M. LeBeau & S. Stemmer (2008). Experimental quantification of annular dark-field images in scanning transmission electron microscopy. Ultramicroscopy 108(12), 16531658.

Z.Y. Li , N.P. Young , M. Di Vece , S. Palomba , R.E. Palmer , A.L. Bleloch , B.C. Curley , R.L. Johnston , J. Jiang & J. Yuan (2008). Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451(7174), 4648.

R.P. Liferovich & R.H. Mitchell (2004). A structural study of ternary lanthanide orthoscandate perovskites. J Solid State Chem 177(6), 21882197.

R.F. Loane , P. Xu & J. Silcox (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr A 47(3), 267278.

A. Mittal & K. Andre Mkhoyan (2011). Limits in detecting an individual dopant atom embedded in a crystal. Ultramicroscopy 111, 11011110.

K.A. Mkhoyan , T. Babinec , S.E. Maccagnano , E.J. Kirkland & J. Silcox (2007). Separation of bulk and surface-losses in low-loss EELS measurements in STEM. Ultramicroscopy 107(4-5), 345355.

K.A. Mkhoyan , P.E. Batson , J. Cha , W.J. Schaff & J. Silcox (2006). Direct determination of local lattice polarity in crystals. Science 312(5778), 1354.

D.A. Muller (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8(4), 263270.

D.A. Muller , L.F. Kourkoutis , M. Murfitt , J.H. Song , H.Y. Hwang , J. Silcox , N. Dellby & O.L. Krivanek (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319(5866), 10731076.

L.-M. Peng (2005). Electron atomic scattering factors, Debye–Waller factors and the optical potential for high-energy electron diffraction. J Elec Microsc 54(3), 199207.

V. Radmilovic , C. Ophus , E.A. Marquis , M.D. Rossell , A. Tolley , A. Gautam , M. Asta & U. Dahmen (2011). Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater 10(9), 710715.

H. Rose & J. Fertig (1976). Influence of detector geometry on image properties of STEM for thick objects. Ultramicroscopy 2(1), 7787.

S. Van Aert , K.J. Batenburg , M.D. Rossell , R. Erni & G. Van Tendeloo (2011). Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470(7334), 374377.

P.M. Voyles , D.A. Muller , J.L. Grazul , P.H. Citrin & H.J.L. Gossmann (2002). Atomic-scale imaging of individual dopant atoms and clusters in highly n-type bulk Si. Nature 416(6883), 826829.

H.L. Xin , V. Intaraprasonk & D.A. Muller (2008). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92, 013125.

H.L. Xin , J.A. Mundy , Z. Liu , R. Cabezas , R. Hovden , L.F. Kourkoutis , J. Zhang , N.P. Subramanian , R. Makharia , F.T. Wagner & D.A. Muller (2011). Atomic-resolution spectroscopic imaging of ensembles of nanocatalyst particles across the life of a fuel cell. Nano Lett 12(1), 490497.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 109 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th April 2017. This data will be updated every 24 hours.