Skip to main content Accesibility Help

The Development and Applications of Ultrafast Electron Nanocrystallography

  • Chong-Yu Ruan (a1), Yoshie Murooka (a1), Ramani K. Raman (a1), Ryan A. Murdick (a1), Richard J. Worhatch (a1) and Aric Pell (a1)...

We review the development of ultrafast electron nanocrystallography as a method for investigating structural dynamics for nanoscale materials and interfaces. Its sensitivity and resolution are demonstrated in the studies of surface melting of gold nanocrystals, nonequilibrium transformation of graphite into reversible diamond-like intermediates, and molecular scale charge dynamics, showing a versatility for not only determining the structures, but also the charge and energy redistribution at interfaces. A quantitative scheme for 3D retrieval of atomic structures is demonstrated with few-particle (<1,000) sensitivity, establishing this nanocrystallographic method as a tool for directly visualizing dynamics within isolated nanomaterials with atomic scale spatio-temporal resolution.

Corresponding author
Corresponding author. E-mail:
Hide All
Alivisatos, A.P. (1996). Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933937.
Anderson, S.G., Musumeci, P., Rosenzweig, J.B., Brown, W.J., England, R.J., Ferrario, M., Jacob, J.S., Thompson, M.C., Travish, G., Tremaine, A.M. & Yoder, R. (2005). Velocity bunching of high brightness electron beams. Phys Rev Spec Top-Accel Beams 8, 014401.
Awschalom, D.D., Divincenzo, D.P. & Smyth, J.F. (1992). Macroscopic quantum effects in nanometer-scale magnets. Science 258, 414421.
Baum, P. & Zewail, A.H. (2006). Breaking resolution limits in ultrafast ulectron diffraction and microscopy. Proc Nat Acad Sci USA 103, 1610516110.
Bhat, R.R., Fischer, D.A. & Genzer, J. (2002). Fabricating planar nanoparticle assemblies with number density gradients. Langmuir 18, 56405643.
Billinge, S.J.L. & Levin, L. (2007). The problem with determining atomic structure at the nanoscale. Science 316, 56565.
Buffat, P. & Borel, J.P. (1976). Size effect on melting temperature of gold particles. Phys Rev A 13, 22872298.
Cao, J., Hao, Z., Park, H., Tao, C., Kau, D. & Blaszczyk, L. (2003). Femtosecond electron diffraction for direct measurement of ultrafast atomic motions. Appl Phys Lett 83, 10441046.
Cavalieri, A.L., Muller, N., Uphues, Th., Yakovlev, V.S., Baltuska, A., Horvath, B., Schmidt, B., Blumel, L., Holzwarth, R., Hendel, S., Drescher, M., Kleineberg, U., Echenique, P.M., Kienberger, R., Krausz, F. & Heinzmann, U. (2007). Attosecond spectroscopy in condensed matter. Nature 449, 10291032.
Doyle, P.A. & Turner, P.S. (1968). Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Cryst A24, 390397.
Dudek, R.C. & Weber, P.M. (2001). Ultrafast diffraction imaging of the electrocyclic ring-opening reaction of 1,3-cyclohexadiene. J Phys Chem A 105, 41674171.
Dwyer, J.R., Hebeisen, C.T., Ernstorfer, R., Harb, M., Deyirmenjian, V.B., Jordan, R.E. & Miller, R.J.D. (2006). Femtosecond electron diffraction: “Making the molecular movie.” Phil Trans R Soc A 364, 741778.
Eberhardt, W. (2002). Clusters as new materials. Surf Sci 500, 242270.
Ercolessi, F., Andreoni, W. & Tosatti, E. (1991). Melting of small gold particles: Mechanism and size effects. Phys Rev Lett 66, 911914.
Fahy, S., Louie, S.G. & Cohen, M.L. (1986). Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys Rev B 34, 11911199.
Hakkinen, H., Abbet, W., Sanchez, A., Heiz, U. & Landman, U. (2003). Structural, electronic, and impurity-doping effects in nanoscale chemistry: Supported gold nanoclusters. Angew Chem Int Ed 42, 12971300.
Halas, N.J. & Bokor, J. (1989). Surface recombination on the Si(111) 2 × 1 surface. Phys Rev Lett 62, 16791689.
Hargittai, I. & Hargittai, M. (1988). Stereochemical Applications of Gas-Phase Electron Diffraction. New York: Wiley-VCH.
Hartland, G.V., Hu, M. & Sader, J.E. (2003). Softening of the symmetric breathing mode in gold particles by laser-induced heating. Phys Chem B 107, 74727478.
Haruta, M. (1997). Size- and support-dependency in the catalysis of gold. Catalysis Today 36, 153166.
Hommelhoff, P., Sortais, Y., Aghajani, A.-T. & Kasevich, M.A. (2006). Field emission tip as a nanometer source of free electron femtosecond pulses. Phys Rev Lett 96, 077401.
Iijima, S. & Ichihashi, T. (1986). Structural instability of ultrafine particles of metals. Phys Rev Lett 56, 616619.
Ino, S. & Ogawa, J. (1967). Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J Phys Soc Jpn 22, 13651374.
Ishioka, K., Hase, M., Kitajima, M. & Ushida, K. (2001). Ultrafast carrier and phonon dynamics in ion-irradiated graphite. Appl Phys Lett 78, 39653967.
Kampfrath, T., Perfetti, L., Schapper, F., Frischkorn, C. & Wolf, M. (2005). Strongly coupled optical phonons in the ultrafast dynamics of the electronic energy and current relaxation in graphite. Phys Rev Lett 95, 187403.
Kern, W. & Puotinen, D.A. (1970). Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology. RCA Review 31, 187206.
King, W.E., Campbell, G.H., Frank, A., Reed, B., Schmerge, J.F., Siwick, B.J., Stuart, B.C. & Weber, P.M. (2005). Ultrafast electron microscopy in materials science, biology, and chemistry. J Appl Phys 97, 111101111127.
Klein, D.L., McEuen, P.L., Katari, J.E.B., Roth, R. & Alivisatos, A.P. (1996). An approach to electrical studies of single nanocrystals. Appl Phys Lett 68, 25742576.
Lewis, L.J., Jensen, P. & Barrat, J.-L. (1997). Melting, freezing, and coalescence of gold nanoclusters. Phys Rev B 56, 22482257.
Link, S. & El-Sayed, M.A. (2001). Spectroscopic determination of the melting energy of a gold nanorod. J Chem Phys 114, 23622368.
Liu, S., Zhu, T., Hu, R. & Liu, Z. (2002). Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array. Phys Chem Chem Phys 4, 60596062.
Lobastov, V.A., Srinivasan, R. & Zewail, A.H. (2005). Four-dimensional ultrafast electron microscopy. Proc Nat Acad Sci USA 102, 70697073.
Mackay, A.L. (1962). A dense non-crystallographic packing of equal sphere. Acta Cryst 15, 916918.
Mao, W.L., Mao, H.-K., Eng, P.J., Trainor, T.P., Newville, M., Kao, C.-C., Heinz, D.L., Shu, J., Meng, Y. & Hemley, R.J. (2003). Bonding changes in compressed superhard graphite. Science 302, 425427.
Marks, L.D. (1994). Experimental studies of small particle structures. Rep Prog Phys 57, 603649.
Marsi, M., Belkhou, R., Grupp, C., Panaccione, G., Taleb-Ibrahimi, A., Nahon, L., Garzella, D., Renault, E., Roux, R., Couprie, M.E. & Billardon, M. (2000). Transient charge carrier distribution at UV-photoexcited SiO2/Si Interfaces. Phys Rev B 61, R5070R5073.
McGreevy, R.L. (2001). Reverse Monte Carlo modeling. J Phys: Condens Matter 13, R877R913.
Meguro, T., Hida, A., Suzuki, M., Koguchi, Y., Takai, H., Yamamoto, Y., Maeda, K. & Aoyagi, Y. (2001). Creation of nanodiamonds by single impacts of highly charged ions upon graphite. Appl Phys Lett 79, 38663868.
Mishina, T., Nitta, K. & Masumoto, Y. (2000). Coherent lattice vibration of interlayer shearing mode of graphite. Phys Rev B 62, 29082911.
Murdick, R.A., Raman, R.K., Murooka, Y. & Ruan, C.-Y. (2008). Photovoltage dynamics of the hydroxylated Si(111) surface investigated by ultrafast electron diffraction. Phys Rev B 77, 245329.
Nakayama, H. & Katayama-Yoshida, H. (2003). Direct conversion of graphite into diamond through electronic excited states. J Phys-Condens Mat 15, R1077R1091.
Peng, L.-M., Dudarev, S.L. & Whelan, M.J. (2004). High Energy Electron Diffraction and Microscopy. Oxford, U.K.: Oxford University Press.
Plech, A., Cerna, R., Kotaidis, V., Hudert, F., Bartels, A. & Dekorsy, T. (2007). A surface phase transition of supported gold nanoparticles. Nano Lett 7, 10261031.
Plech, A., Kotaidis, V., Gresillon, S., Dahmen, C. & Von Plessen, G. (2004). Laser-induced heating and melting of gold nanoparticles studied by time-resolved X-ray scattering. Phys Rev B 70, 195423.
Raman, R.K., Murooka, Y., Ruan, C.-Y., Yang, T., Berber, S. & Tománek, D. (2008). Direct observation of optically induced transient structures in graphite using ultrafast electron crystallography. Phys Rev Lett 101, 077401.
Ruan, C.-Y., Murooka, Y., Raman, R.K. & Murdick, R.A. (2007). Dynamics of size-selected gold nanoparticles studied by ultrafast electron nanocrystallography. Nano Lett 7, 12901296.
Ruan, C.-Y., Vigliotti, F., Lobastov, V.A., Chen, S.Y. & Zewail, A.H. (2004). Ultrafast electron crystallography: Transient structures of molecules, surfaces, and phase transitions. Proc Natl Acad Sci USA 101, 11231128.
Sato, T., Ahmed, H., Brown, D. & Johnson, B.F.G. (1997a). Single electron transistor using a molecularly linked gold colloidal particle chain. J Appl Phys 82, 696701.
Sato, T., Brown, D. & Johnson, B.F.G. (1997b). Nucleation and growth of nano-gold colloidal lattices. Chem Commun 11, 10071008.
Scandolo, S., Bernasconi, M., Chiarotti, G.L., Focher, P. & Tosatti, E. (1995). Pressure-induced transformation path for graphite to diamond. Phys Rev Lett 74, 40154018.
Schmitt, J., Mächtle, P., Eck, D., Möhwald, H. & Helm, C.A. (1999). Preparation and optical properties of colloidal gold monolayers. Langmuir 15, 32563266.
Shipway, A.N., Katz, E. & Willner, I. (2000). Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chem Phys Chem 1, 1852.
Siwick, B.J., Dwyer, J.R., Jordan, R.E. & Miller, R.J.D. (2003). An atomic-level view of melting using femtosecond electron diffraction. Science 302, 13821385.
Srinivasan, R., Lobastov, V.A., Ruan, C.-Y. & Zewail, A.H. (2003). Ultrafast electron diffraction (UED)—A new development for the 4D determination of transient molecular structures. Helv Chim Acta 86, 17611799.
Touloukian, Y.S., Kirby, R.K., Taylor, R.E. & Desai, P.D. (1975). Thermal Expansion: Metallic Elements and Alloys. New York: IFI/Plenum.
van Oudheusden, T., de Jong, E.F., van der Geer, S.B., Op 't Root, W.P.E.M., Luiten, O.J. & Siwick, B.J. (2007). Electron source concept for single-shot fs electron diffraction in the 100 keV range. J Appl Phys 102, 0943501.
Wales, D.J. (2000). Structure, dynamics, and thermodynamics of clusters: Tales from topographic potential surfaces. Science 271, 925929.
Wang, N., Rokhlin, S.I. & Farson, D.F. (2008). Nonhomogeneous surface premelting of Au nanoparticles. Nanotech 19, 415701.
Wang, W., Lee, T. & Reed, M.A. (2005). Electron tunnelling in self-assembled monolayers. Rep Prog Phys 68, 523544.
Warren, B.E. (1990). X-Ray Diffraction. Mineola, NY: Dover Publications.
Westcott, S.L., Oldenburg, S.J., Lee, T.R. & Halas, N.J. (1998). Formation and adsorption of clusters of gold nanoparticles onto functionalized silica nanoparticle surfaces. Langmuir 14, 53965401.
Whetten, R.L., Khoury, J.T., Alvarez, M.M., Murthy, S., Vezmar, I., Wang, Z.L., Stephens, P.W., Cleveland, C.L., Luedtke, W.D. & Landman, U. (1996). Nanocrystal gold molecules. Adv Mater 8, 428433.
Williams, P. (1987). Motion of small gold clusters in the electron microscope. Appl Phys Lett 50, 17601762.
Williamson, J.C., Cao, J., Ihee, H., Frey, H. & Zewail, A.H. (1997). Clocking transient chemical changes by ultrafast electron diffraction. Nature 386, 159162.
Williamson, J.C. & Zewail, A.H. (1993). Ultrafast electron diffraction. Velocity mismatch and temporal resolution in crossed-beam experiments. Chem Phys Lett 209, 1016.
Yang, G.W. & Wang, J.B. (2001). Pulsed-laser induced transformation path of graphite to diamond via an intermediate rhombohedral graphite. Appl Phys A: Mater Sci Process 72, 475479.
Zanchet, D., Tolentino, H., Martins Alves, M.C., Alves, O.L. & Ugarte, D. (2000). Interatomic distance contraction in thiol-passivated gold nanoparticles. Chem Phys Lett 157, 167174.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed