Abellan, P., Mehdi, B.L., Parent, L.R., Gu, M., Park, C., Xu, W., Zhang, Y., Arslan, I., Zhang, J.-G., Wang, C.M., Evans, J.E. & Browning, N.D. (2014). Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett
14(3), 1293–1299.
Alliata, D., Kotz, R., Novak, P. & Siegenthaler, H. (2000). Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem Commun
2, 436–440.
Armand, M. & Tarascon, J.-M. (2008). Building better batteries. Nature
451, 652–657.
Aurbach, D. (2003). Electrode-solution interactions in Li-ion batteries: A short summary and new insights. J Power Sources
119, 497–503.
Aurbach, D. & Ein-Eli, Y. (1995). The study of Li-graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc
142(6), 1746–1752.
Aurbach, D., Ein-Eli, Y., Chusid, O., Carmeli, Y., Babai, M. & Yamin, H. (1994
a). The correlation between the surface-chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries. J Electrochem Soc
141(3), 603–611.
Aurbach, D., Markovsky, B., Weissman, I., Levi, E. & Ein-Eli, Y. (1999). On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta
45(1–2), 67–86.
Aurbach, D., Weissman, I., Zaban, A. & Chusid, O. (1994
b). Correlation between surface chemistry, morphology, cycling efficiency, and interfacial properties of Li electrodes in solutions containing different salts. Electrochem Acta
39(1), 51–71.
Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. (2002). A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics
148, 405–416.
Balbuena, P.B. & Wang, Y., Eds. (2004). Lithium-Ion Batteries: Solid-Electrolyte Interphase. London: Imperial College Press.
Bar-Tow, D., Peled, E. & Burstein, L. (1999). A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc
146(3), 824–832.
Bridges, C.A., Sun, X.-G., Zhao, J., Paranthaman, M.P. & Dai, S. (2012). In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C
116, 7701–7711.
Broussley, M., Biensem, P., Bonhomme, F., Blanchard, P., Herreyre, S., Nechev, K. & Staniewicz, R.J. (2005). Main aging mechanisms in Li ion batteries. J Power Sources
146(1–2), 90–96.
Chen, X., Noh, K.W., Wen, J.G. & Dillon, S.J. (
2012). In situ electrochemical wet cell transmission electron microscopy characterization of solid-liquid interactions between Ni and aqueous NiCl2
. Acta Materialia
60(1), 192–198.
De Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci
106(7), 2159–2164.
De Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol
6, 695–704.
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett
11(7), 2809–2813.
Fong, R., Sacken, U.V. & Dahn, J.R. (1990). Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc.
137, 2009–2013.
Goodenough, J.B. & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chem Mater Rev
22, 587–603.
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connel, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Lauhon, L.J., Arslan, I., Zhang, J.G., Liu, J., Cui, Y., Browning, N.D. & Wang, C.M. (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett
13, 6106–6112.
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H., Qi, L., Kushima, A. & Li, J. (2010). In situ observation of the electrochemical lithiation of a single SnO nanowire electrode. Science
330, 1515–1520.
Markovsky, B., Rodkin, A., Cohen, Y.S., Palchik, O., Aurbach, D., Kim, H.-J. & Schmidt, M. (2003). The study of capacity fading processes of Li-ion batteries: Major factors that play a role. J Power Sources
119–121, 504–510.
Novak, P., Joho, F., Lanz, M., Rykart, B., Panitz, J.-C., Alliata, D., Kotz, R. & Hass, O. (2001). The complex electrochemistry of graphite electrodes in lithium-ion batteries. J Power Sources
97–98, 39–46.
Owejan, J.E., Owejan, J.P., Decaluwe, S.C. & Dura, J.A. (2012). Solid electrolyte interphase in Li-ion batteries: Evolving structures measured in situ by neutron reflectometry. Chem Mater
24(11), 2133–2140.
Peled, E. (1979). The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc
126(12), 2047–2051.
Peled, E., Golodnitsky, D. & Ardel, G. (1997). Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc
144(8), L208–L210.
Radisic, A., Philippe, M., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006). Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett
6(2), 238–242.
Sacci, R.L., Dudney, N.J., More, K.L., Parent, L.R., Arslan, I., Browning, N.D. & Unocic, R.R. (2014). Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem Commun
50, 2104–2107.
Tarascon, J.-M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature
414, 359–367.
Tasaki, K., Goldberg, A., Lian, J.-J., Walker, M., Timmons, A. & Harris, S.J. (2009). Solubility of lithium salts on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc
156(12), A1019–A1027.
Verma, P., Maire, P. & Novak, P. (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta
55, 6332–6341.
Wang, C.M., Xu, W., Liu, J., Zhang, J.G., Saraf, L.V., Arey, B.W., Choi, D., Yang, Z.G., Xiao, J., Thevuthasan, S. & Baer, D.R. (2011
a). In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett
11, 1874–1880.
Wang, F., Graetz, J., Moreno, M.S., Ma, C., Wi, L., Volkov, V. & Zhu, Y. (2011
b). Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano
5(2), 1190–1197.
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B. & Regan, B.C. (2012). In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano
6(7), 6308–6317.
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater
2, 532–536.
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev
104, 4303–4417.
Zheng, H., Smith, R.K., Jun, Y.-W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Nanocrystal growth trajectories observation of single colloidal platinum. Science
324, 1309–1312.
Zeng, Z., Liang, W.-I., Liao, H.-G., Xin, H.L., Chu, Y.-H. & Zheng, H. (2014). Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in Situ TEM. Nano Lett
14(4), 1745–1750.