Skip to main content
×
Home
    • Aa
    • Aa

Direct Visualization of Solid Electrolyte Interphase Formation in Lithium-Ion Batteries with In Situ Electrochemical Transmission Electron Microscopy

  • Raymond R. Unocic (a1), Xiao-Guang Sun (a2), Robert L. Sacci (a3), Leslie A. Adamczyk (a3), Daan Hein Alsem (a4), Sheng Dai (a2), Nancy J. Dudney (a3) and Karren L. More (a1)...
Abstract
Abstract

Complex, electrochemically driven transport processes form the basis of electrochemical energy storage devices. The direct imaging of electrochemical processes at high spatial resolution and within their native liquid electrolyte would significantly enhance our understanding of device functionality, but has remained elusive. In this work we use a recently developed liquid cell for in situ electrochemical transmission electron microscopy to obtain insight into the electrolyte decomposition mechanisms and kinetics in lithium-ion (Li-ion) batteries by characterizing the dynamics of solid electrolyte interphase (SEI) formation and evolution. Here we are able to visualize the detailed structure of the SEI that forms locally at the electrode/electrolyte interface during lithium intercalation into natural graphite from an organic Li-ion battery electrolyte. We quantify the SEI growth kinetics and observe the dynamic self-healing nature of the SEI with changes in cell potential.

Copyright
Corresponding author
*Corresponding author. unocicrr@ornl.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

P. Abellan , B.L. Mehdi , L.R. Parent , M. Gu , C. Park , W. Xu , Y. Zhang , I. Arslan , J.-G. Zhang , C.M. Wang , J.E. Evans & N.D. Browning (2014). Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett 14(3), 12931299.

D. Alliata , R. Kotz , P. Novak & H. Siegenthaler (2000). Electrochemical SPM investigation of the solid electrolyte interphase film formed on HOPG electrodes. Electrochem Commun 2, 436440.

M. Armand & J.-M. Tarascon (2008). Building better batteries. Nature 451, 652657.

D. Aurbach , Y. Ein-Eli , O. Chusid , Y. Carmeli , M. Babai & H. Yamin (1994 a). The correlation between the surface-chemistry and the performance of Li-carbon intercalation anodes for rechargeable rocking-chair type batteries. J Electrochem Soc 141(3), 603611.

D. Aurbach , I. Weissman , A. Zaban & O. Chusid (1994 b). Correlation between surface chemistry, morphology, cycling efficiency, and interfacial properties of Li electrodes in solutions containing different salts. Electrochem Acta 39(1), 5171.

D. Aurbach & Y. Ein-Eli (1995). The study of Li-graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc 142(6), 17461752.

D. Aurbach , B. Markovsky , I. Weissman , E. Levi & Y. Ein-Eli (1999). On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries. Electrochim Acta 45(1–2), 6786.

D. Aurbach , E. Zinigrad , Y. Cohen & H. Teller (2002). A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ionics 148, 405416.

P.B. Balbuena & Y. Wang , Eds. (2004). Lithium-Ion Batteries: Solid-Electrolyte Interphase. London: Imperial College Press.

D. Bar-Tow , E. Peled & L. Burstein (1999). A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries. J Electrochem Soc 146(3), 824832.

C.A. Bridges , X.-G. Sun , J. Zhao , M.P. Paranthaman & S. Dai (2012). In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116, 77017711.

M. Broussley , P. Biensem , F. Bonhomme , P. Blanchard , S. Herreyre , K. Nechev & R.J. Staniewicz (2005). Main aging mechanisms in Li ion batteries. J Power Sources 146(1–2), 9096.

X. Chen , K.W. Noh , J.G. Wen & S.J. Dillon ( 2012). In situ electrochemical wet cell transmission electron microscopy characterization of solid-liquid interactions between Ni and aqueous NiCl2. Acta Materialia 60(1), 192198.

N. De Jonge , D.B. Peckys , G.J. Kremers & D.W. Piston (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci 106(7), 21592164.

N. De Jonge & F.M. Ross (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.

J.E. Evans , K.L. Jungjohann , N.D. Browning & I. Arslan (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11(7), 28092813.

R. Fong , U.V. Sacken & J.R. Dahn (1990). Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc. 137, 20092013.

J.B. Goodenough & Y. Kim (2010). Challenges for rechargeable Li batteries. Chem Mater Rev 22, 587603.

M. Gu , L.R. Parent , B.L. Mehdi , R.R. Unocic , M.T. McDowell , R.L. Sacci , W. Xu , J.G. Connel , P. Xu , P. Abellan , X. Chen , Y. Zhang , D.E. Perea , L.J. Lauhon , I. Arslan , J.G. Zhang , J. Liu , Y. Cui , N.D. Browning & C.M. Wang (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett 13, 61066112.

J.Y. Huang , L. Zhong , C.M. Wang , J.P. Sullivan , W. Xu , L.Q. Zhang , S.X. Mao , N.S. Hudak , X.H. Liu , A. Subramanian , H. Fan , L. Qi , A. Kushima & J. Li (2010). In situ observation of the electrochemical lithiation of a single SnO nanowire electrode. Science 330, 15151520.

J.E. Owejan , J.P. Owejan , S.C. Decaluwe & J.A. Dura (2012). Solid electrolyte interphase in Li-ion batteries: Evolving structures measured in situ by neutron reflectometry. Chem Mater 24(11), 21332140.

E. Peled (1979). The electrochemical-behavior of alkali and alkaline-earth metals in non-aqueous battery systems—the solid electrolyte interphase model. J Electrochem Soc 126(12), 20472051.

E. Peled , D. Golodnitsky & G. Ardel (1997). Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes. J Electrochem Soc 144(8), L208L210.

A. Radisic , M. Philippe , P.M. Vereecken , J.B. Hannon , P.C. Searson & F.M. Ross (2006). Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6(2), 238242.

R.L. Sacci , N.J. Dudney , K.L. More , L.R. Parent , I. Arslan , N.D. Browning & R.R. Unocic (2014). Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem Commun 50, 21042107.

J.-M. Tarascon & M. Armand (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359367.

K. Tasaki , A. Goldberg , J.-J. Lian , M. Walker , A. Timmons & S.J. Harris (2009). Solubility of lithium salts on the lithium-ion battery negative electrode surface in organic solvents. J Electrochem Soc 156(12), A1019A1027.

P. Verma , P. Maire & P. Novak (2010). A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55, 63326341.

C.M. Wang , W. Xu , J. Liu , J.G. Zhang , L.V. Saraf , B.W. Arey , D. Choi , Z.G. Yang , J. Xiao , S. Thevuthasan & D.R. Baer (2011 a). In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett 11, 18741880.

F. Wang , J. Graetz , M.S. Moreno , C. Ma , L. Wi , V. Volkov & Y. Zhu (2011 b). Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano 5(2), 11901197.

E.R. White , S.B. Singer , V. Augustyn , W.A. Hubbard , M. Mecklenburg , B. Dunn & B.C. Regan (2012). In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6(7), 63086317.

M.J. Williamson , R.M. Tromp , P.M. Vereecken , R. Hull & F.M. Ross (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater 2, 532536.

K. Xu (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104, 43034417.

Z. Zeng , W.-I. Liang , H.-G. Liao , H.L. Xin , Y.-H. Chu & H. Zheng (2014). Visualization of electrode-electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in Situ TEM. Nano Lett 14(4), 17451750.

H. Zheng , R.K. Smith , Y.-W. Jun , C. Kisielowski , U. Dahmen & A.P. Alivisatos (2009). Nanocrystal growth trajectories observation of single colloidal platinum. Science 324, 13091312.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
VIDEO
Supplementary Materials

Unocic Supplementary Material
Movie 1

 Video (12.6 MB)
12.6 MB

Metrics

Full text views

Total number of HTML views: 18
Total number of PDF views: 152 *
Loading metrics...

Abstract views

Total abstract views: 329 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 28th June 2017. This data will be updated every 24 hours.