Skip to main content
    • Aa
    • Aa

Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts

  • Barnaby D.A. Levin (a1), Michael J. Zachman (a1), Jörg G. Werner (a2), Ritu Sahore (a2), Kayla X. Nguyen (a1), Yimo Han (a1), Baoquan Xie (a2), Lin Ma (a2), Lynden A. Archer (a3), Emmanuel P. Giannelis (a2), Ulrich Wiesner (a2), Lena F. Kourkoutis (a1) (a4) and David A. Muller (a1) (a4)...

Lithium sulfur (Li–S) batteries have the potential to provide higher energy storage density at lower cost than conventional lithium ion batteries. A key challenge for Li–S batteries is the loss of sulfur to the electrolyte during cycling. This loss can be mitigated by sequestering the sulfur in nanostructured carbon–sulfur composites. The nanoscale characterization of the sulfur distribution within these complex nanostructured electrodes is normally performed by electron microscopy, but sulfur sublimates and redistributes in the high-vacuum conditions of conventional electron microscopes. The resulting sublimation artifacts render characterization of sulfur in conventional electron microscopes problematic and unreliable. Here, we demonstrate two techniques, cryogenic transmission electron microscopy (cryo-TEM) and scanning electron microscopy in air (airSEM), that enable the reliable characterization of sulfur across multiple length scales by suppressing sulfur sublimation. We use cryo-TEM and airSEM to examine carbon–sulfur composites synthesized for use as Li–S battery cathodes, noting several cases where the commonly employed sulfur melt infusion method is highly inefficient at infiltrating sulfur into porous carbon hosts.

Corresponding author
* Corresponding author.
Hide All
AdrianM., DubochetJ., LepaultJ. & McDowallA.W. (1984). Cryo-electron microscopy of viruses. Nature 308, 3236.
BruceP.G., FreunbergerS.A., HardwickL.J. & TarasconJ.M. (2011). Li–O2 and Li–S batteries with high energy storage. Nat Mater 11(1), 1929.
ChisneyD.B., BoringJ.W., JohnsonR.E. & PhippsJ.A. (1988). Molecular ejection from low temperature sulfur by keV ions. Surf Sci 195, 594618.
DubochetJ. & McDowallA.W. (1981). Vitrification of pure water for electron microscopy. J Microsc 124, RP3RP4.
EgertonR.F., LiP. & MalacM. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.
FerreiraA.G.M. & LoboL.Q. (2011). The low-pressure phase diagram of sulfur. J Chem Thermodyn 43, 95104.
FujimoriT., Morelos-GómezA., ZhuZ., MuramatsuH., FutamuraR., UritaK., TerronesM., HayashiT., EndoM., HongS.Y., Chul ChoiY., TománekD. & KanekoK. (2013). Conducting linear chains of sulphur inside carbon nanotubes. Nat Commun 4, 2162.
HanY., NguyenK., OgawaY., ShiH., ParkJ. & MullerD.A. (2015). Electron microscopy in air: Transparent atomic membranes and imaging modes. Microsc Microanal 21(S3), 11111112.
HeG., EversS., LiangX., CuisinierM., GarsuchA. & NazarL.F. (2013). Tailoring porosity in carbon nanospheres for lithium–sulfur battery cathodes. ACS Nano 7, 1092010930.
JayaprakashN., ShenJ., MogantyS.S., CoronaA. & ArcherL.A. (2011). Porous hollow carbon-sulfur composites for high-power lithium–sulfur batteries. Angew Chem Int Ed. 123, 60266030.
JiX., LeeK.T. & NazarL.F. (2009). A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat Mater 8, 500506.
KimH., LeeJ.T., MagasinskiA., ZhaoK., LiuY. & YushinG. (2015). In situ TEM observation of electrochemical lithiation of sulfur Confined within inner cylindrical pores of carbon nanotubes. Adv Energy Mater. 5, 1501306.
KourkoutisL.F., PlitzkoJ.M. & BaumeisterW. (2012). Electron microscopy of biological materials at the nanometer scale. Ann Rev Mater Res 42, 3358.
MaL., HendricksonK.E., WeiS. & ArcherL.A. (2015). Nanomaterials: Science and applications in the lithium-sulfur battery. Nano Today 10, 315338.
NashD.B. (1987). Sulfur in vacuum: Sublimation effects on frozen melts, and applications to Io’s surface and torus. Icarus 72, 134.
NguyenK.X., HoltzM.E. & MullerD.A. (2013). AirSEM: Electron microscopy in air, without a specimen chamber. Microsc Microanal 19(S2), 428429.
NguyenK.X., HoltzM.E., Richmond-DeckerJ., MilsteinY. & MullerD.A. (2014). Spatial resolution of scanning electron microscopy without a vacuum chamber. Microsc Microanal 20(S3), 2627.
NguyenK.X., HoltzM.E., Richmond-DeckerJ. & MullerD.A. (2016). Spatial resolution in scanning electron microscopy and scanning transmission electron microscopy, without a specimen vacuum chamber, Microsc Microanal, 22, 754767.
RaiβC., PepplerK., JanekJ. & AdelhelmP. (2014). Pitfalls in the characterization of sulfur/carbon nanocomposite materials for lithium–sulfur batteries. Carbon 79, 245255.
SahoreR., EstevezL.P., RamanujapuramA., DiSalvoF.J. & GiannelisE.P. (2015). High-rate lithium–sulfur batteries enabled by hierarchical porous carbons synthesized via ice templation. J Power Sources 297, 188194.
SahoreR., LevinB.D.A., PanM., MullerD.A., DiSalvoF.J. & GiannelisE.P. (2016). Design principles for optimum performance of porous carbons in lithium–sulfur batteries, Adv Energy Mater 6, 1600134.
SehZ.W., LiW., ChaJ.J., ZhengG., YangY., McDowellM.T., HsuP.C. & CuiY. (2013). Sulphur–TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4, 1331.
SolomonovI., Talmi-FrankD., MilsteinY., AddadiS., AloshinA. & SagiI. (2014). Introduction of correlative light and airSEMTM microscopy imaging for tissue research under ambient conditions. Nat Sci Rep 4, 5987.
SongJ., XuT., GordinM.L., ZhuP., LvD., JiangY.B., ChenY., DuanY. & WangD. (2014). Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv Funct Mater 24, 12431250.
VidavskyN., AddadiS., MahamidJ., ShimoniE., Ben-EzraD., ShpigelM., WeinerS. & AddadiL. (2014). Initial stages of calcium uptake and mineral deposition in sea urchin embryos. Proc Natl Acad Sci USA 111(1), 3944.
WangH., YangY., LianY., RobinsonJ.T., LiY., JacksonA., CuiY. & DaiH. (2011). Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7), 26442647.
WernerJ.G., JohnsonS.S., VijayV. & WiesnerU. (2015). Carbon–sulfur composites from cylindrical and gyroidal mesoporous carbons with tunable properties in lithium–sulfur batteries. Chem Mater 27, 33493357.
XiaoL., CaoY., XiaoJ., SchwenzerB., EngelhardM.H., SarafL.V., NieZ., ExarhosG.J. & LiuJ. (2012). A soft approach to encapsulate sulfur: Polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv Mater 24, 11761181.
XieB., ShiH., LiuG., ZhouY., WangY., ZhaoY. & WangD. (2008). Preparation of surface porous microcapsules templated by self-assembly of nonionic surfactant micelles. Chem Mater 20(9), 30993104.
ZhaoY., WuW., LiJ., XuZ. & GuanL. (2014). Encapsulating MWNTs into hollow porous carbon nanotubes: A tube-in-tube carbon nanostructure for high-performance lithium-sulfur batteries. Adv Mater 26, 51135118.
ZhengG., ZhangQ., ChaJ.J., YangY., LiW., SehZ.W. & CuiY. (2013). Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13(3), 12651270.
ZhouW., XiaoX., CaiM. & YangL. (2014). Polydopamine-coated, nitrogen-doped, hollow carbon−sulfur double-layered core−shell structure for improving lithium−sulfur batteries. Nano Lett 14, 52505256.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Levin supplementary material
Levin supplementary material 1

 Word (3.6 MB)
3.6 MB


Altmetric attention score

Full text views

Total number of HTML views: 28
Total number of PDF views: 175 *
Loading metrics...

Abstract views

Total abstract views: 722 *
Loading metrics...

* Views captured on Cambridge Core between 23rd February 2017 - 22nd October 2017. This data will be updated every 24 hours.