Skip to main content Accessibility help

Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out

  • Michael J. Zachman (a1) (a2), Emily Asenath-Smith (a3), Lara A. Estroff (a2) (a3) and Lena F. Kourkoutis (a1) (a2)


Scanning transmission electron microscopy (STEM) allows atomic scale characterization of solid–solid interfaces, but has seen limited applications to solid–liquid interfaces due to the volatility of liquids in the microscope vacuum. Although cryo-electron microscopy is routinely used to characterize hydrated samples stabilized by rapid freezing, sample thinning is required to access the internal interfaces of thicker specimens. Here, we adapt cryo-focused ion beam (FIB) “lift-out,” a technique recently developed for biological specimens, to prepare intact internal solid–liquid interfaces for high-resolution structural and chemical analysis by cryo-STEM. To guide the milling process we introduce a label-free in situ method of localizing subsurface structures in suitable materials by energy dispersive X-ray spectroscopy (EDX). Monte Carlo simulations are performed to evaluate the depth-probing capability of the technique, and show good qualitative agreement with experiment. We also detail procedures to produce homogeneously thin lamellae, which enable nanoscale structural, elemental, and chemical analysis of intact solid–liquid interfaces by analytical cryo-STEM. This work demonstrates the potential of cryo-FIB lift-out and cryo-STEM for understanding physical and chemical processes at solid–liquid interfaces.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out
      Available formats


Corresponding author

* Corresponding author.


Hide All

B90 Physical Sciences Building, Cornell University, 245 East Avenue, Ithaca, NY 14853, USA.

US Army Engineer Research & Development Center (ERDC), Cold Regions Research & Engineering Laboratory (CRREL), 72 Lyme Road, Hanover, NH 03755, USA.


329 Bard Hall, Cornell University, Ithaca, NY 14853, USA.

235 Clark Hall, Cornell University, Ithaca, NY 14853, USA.



Hide All
Agronskaia, A.V., Valentijn, J.A., van Driel, L.F., Schneijdenberg, C.T.W.M., Humbel, B.M., van Bergen en Henegouwen, P.M.P., Verkleij, A.J., Koster, A.J. & Gerritsen, H.C. (2008). Integrated fluorescence and transmission electron microscopy. J Struct Biol 164, 183189.
Al-Amoudi, A., Norlen, L.P.O. & Dubochet, J. (2004). Cryo-electron microcopy of vitreous sections of native biological cells and tissues. J Struct Biol 148, 131135.
Al-Amoudi, A., Studer, D. & Dubochet, J. (2005). Cutting artefacts and cutting process in vitreous sections for cryo-electron microscopy. J Struct Biol 150, 109121.
Anderson, C.A. & Hasler, M.F. (1966). Extension of electron microprobe techniques to biochemistry by the use of long wavelength X-rays. In Proceedings of the Fourth International Conference on X-Ray Optics and Microanalysis, Castaing, R., Deschamps, P. & Philibert, J. (Eds.), pp. 310327. Paris: Hermann.
Antoniou, N., Graham, A., Hartfield, C. & Amador, G. (2012). Failure analysis of electronic material using cryogenic FIB-SEM. ISTFA 2012: Conference Proceedings from the 38th International Symposium for Testing and Failure Analysis, Nov. 11-15, Phoenix Arizona, USA, pp. 399–405.
Arnold, J., Mahamid, J, Vladan, L., de Marco, A., Fernandez, J.-J., Laugks, T., Mayer, T., Hyman, A.A., Baunmeister, W. & Plitzko, J.M. (2016). Site-specific cryofocused ion beam sample preparation guided by 3D correlative microscopy. Biophys J 110, 860869.
Asenath-Smith, E., Hovden, R., Kourkoutis, L.F. & Estroff, L.A. (2015). Hierarchically structured hematite architectures achieved by growth in a silica hydrogel. J Am Chem Soc 137, 51845192.
Asenath-Smith, E., Li, H.Y., Keene, E.C., Seh, Z.W. & Estroff, L.A. (2012). Crystal growth of calcium carbonate in hydrogels as a model of biomineralization. Adv Funct Mater 22(14), 28912914.
Asenath-Smith, E. & Estroff, L.A. (2015). Role of akaganeite (β-FeOOH) in the growth of hematite (α-Fe2O3) in an inorganic silica hydrogel. Cryst Growth Des 15, 33883398.
Blesa, M.A. & Matijević, E. (1989). Phase transformations of iron oxides, oxohydroxides, and hydrous oxides in aqueous media. Adv Colloid Interface Sci 29, 173221.
Botton, G.A. (2012). Probing bonding and electronic structure at atomic resolution with spectroscopic imaging. MRS Bull 37, 2128.
Chen, S.-Y., Gloter, A., Zobelli, A., Wang, L., Chen, C.-H. & Colliex, C. (2009). Electron energy loss spectroscopy and ab initio investigation of iron oxide nanomaterials grown by a hydrothermal process. Phys Rev B 79, 104103.
Cheng, Y., Grigorieff, N., Penczek, P.A. & Walz, T. (2015). A primer to single-particle cryo-electron microscopy. Cell 161, 438449.
Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.C., Lepault, J., McDowall, A.W. & Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Q Rev Biophys 21(2), 129228.
Echlin, P. (1992). Low-Temperature Microscopy and Analysis. New York, NY: Plenum Press.
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.
Faas, F.G.A., Bárcena, M., Agronskaia, A.V., Gerritsen, H.C., Moscicka, K.B., Diebolder, C.A., van Driel, L.F., Limpens, R.W.A.L., Bos, E., Ravelli, R.B.G., Koning, R.I. & Koster, A.J. (2013). Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy. J Struct Biol 181, 283290.
Garvie, L.A.J. (2010). Can electron energy-loss spectroscopy (EELS) be used to quantify hydrogen in minerals from the O K edge? Am Mineral 95, 9297.
Gauvin, R. & Michaud, P. (2009). MC X-ray, a new Monte Carlo program for quantitative X-ray microanalysis of real materials. Microsc Microanal 15(Suppl 2), 488489.
Giannuzzi, L.A. & Stevie, F.A. (2005). Introduction to Focused Ion Beams – Instrumentation, Theory, Techniques and Practice. New York, NY: Springer Science+Business Media Inc.
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Echlin, P., Lifshin, E., Sawyer, L. & Michael, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis – Third Edition. New York, NY: Springer Science+Business Media, LLC.
Goodenough, J.B. & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chem Mater 22, 587603.
Hayles, M.F., de Winter, D.A.M., Schneijdenberg, C.T.W.M., Meeldijk, J.D., Luecken, U., Persoon, H., de Water, J., de Jong, F., Humbel, B.M. & Verkleij, A.J. (2010). The making of frozen-hydrated, vitreous lamellas from cells for cryo-electron microscopy. J Struct Biol 172, 180190.
Heinrich, K.F., Newbury, D.E. & Yakowitz, H. (Eds.) (1976). Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy: Proceedings of a Workshop held at the National Bureau of Standards, Gaithersburg, Maryland, October 1-3, 1975 (No. 460). US Department of Commerce, National Bureau of Standards: for sale by the Supt. of Docs., US Govt. Print. Off., Washington, DC.
Henderson, R. (1995). The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q Rev Biophys 28(2), 171193.
Henisch, H. (1988). Crystals in Gels and Liesegang Rings. New York, NY: Cambridge University Press.
Hovington, P., Drouin, D. & Gauvin, R. (1997). CASINO: A new Monte Carlo in C Language for electron beam interaction-part I: Description of the program. Scanning 19, 114.
Kanaya, K. & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. J Phys D Appl Phys 5, 4358.
Kourkoutis, L.F., Plitzko, J.M. & Baumeister, W. (2012). Electron microscopy of biological materials at the nanometer scale. Annu Rev Mater Res 42, 3358.
Kukulski, W., Schorb, M., Welsch, S., Picco, A., Kaksonen, M. & Briggs, J.A.G. (2011). Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192(1), 111119.
Lučić, V., Rigort, A. & Baumeister, W. (2013). Cryo-electron tomography: The challenge of doing structural biology in situ. J Cell Biol 202(3), 407419.
Mahamid, J., Schampers, R., Persoon, H., Hyman, A.A., Baumeister, W. & Plitzko, J.M. (2015). A focused ion beam milling and lift-out approach for site-specific preparation of frozen-hydrated lamellas from multicellular organisms. J Struct Biol 192, 262269.
Marko, M., Hsieh, C., Moberlychan, W., Mannella, C.A. & Frank, J. (2006 a). Focused ion beam milling of vitreous water: prospects for an alternative to cryo-ultramicrotomy of frozen-hydrated biological samples. J Microsc 222(1), 4247.
Marko, M., Hsieh, C., Schalek, R., Frank, J. & Mannella, C. (2007). Focused-ion-beam thinning of frozen-hydrated specimens for cryo-electron microscopy. Nat Methods 4(3), 215217.
Marko, M., Hsieh, C.-E., Shalek, R., Ting, C.S., Manella, C.A. & Frank, J. (2006 b). Focused ion beam (FIB) preparation methods for 3-D biological cryo-TEM. Microsc Microanal 12(Suppl 2), 9899.
McDowall, A.W., Chang, J.-J., Freeman, R., Lepault, J., Walter, C.A. & Dubochet, J. (1983). Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J Microsc 131(1), 19.
Milne, J.L.S., Borgnia, M.J., Bartesaghi, A., Tran, E.E.H., Earl, L.A., Schauder, D.M., Lengyel, J., Pierson, J., Patwardhan, A. & Subramanium, S. (2012). Cryo-electron microscopy – a primer for the non-microscopist. FEBS J 280, 2845.
Muller, D.A. (2009). Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat Mater 8, 263270.
Müller, S.A., Aebi, U. & Engel, A. (2008). What transmission electron microscopes can visualize now and in the future. J Struct Biol 163, 235245.
Mundy, J.A., Hikita, Y., Hidaka, T., Yajima, T., Higuchi, T., Hwang, H.Y., Muller, D.A. & Kourkoutis, L.F. (2014). Visualizing the interfacial evolution from charge compensation to metallic screening across the manganite metal-insulator transition. Nat Commun 5, 3464.
Parmenter, C., Fay, M., Hartfield, C., Amador, G. & Moldovan, G. (2014). Cryogenic FIB lift-out as a preparation method for damage-free soft matter TEM imaging. Microsc Microanal 20(Suppl 3), 12241225.
Parmenter, C.D.J., Fay, M.W., Hartfield, C. & Eltaher, H.M. (2016). Making the practically impossible ‘Merely Difficult’ – cryogenic FIB lift-out for ‘Damage-Free’ soft mattering imaging. Microsc Res Tech 79, 298303.
Plitzko, J.M., Rigort, A. & Leis, A. (2009). Correlative cryo-light microscopy and cryo-electron tomography: From cellular territories to molecular landscapes. Curr Opin Biotechnol 20, 8389.
Reimer, L. (1998). Scanning Electron Microscopy – Physics of Image Formation and Microanalysis. Berlin Heidelberg: Springer-Verlag.
Rigort, A., Bäuerlein, F.J.B., Leis, A., Gruska, M., Hoffmann, C., Laugks, T., Böhm, U., Eibauer, M., Gnaegi, H., Baumeister, W. & Plitzko, J.M. (2010). Micromachining tool and correlative approaches for cellular cryo-electron tomography. J Struct Biol 172, 169179.
Rigort, A., Bäuerlein, F.J.B., Villa, E., Eibauer, M., Laugks, T., Baumeister, W. & Plitzko, J.M. (2012). Foces ion beam micromachining of eukaryotic cells for cryoelectron tomography. Proc Natl Acad Sci USA 109(12), 44494454.
Rubino, S., Akhtar, S., Melin, P., Searle, A., Spellward, P. & Leifer, K. (2012). A site-specific focused-ion-beam lift-out method for cryo transmission electron microscopy. J Struct Biol 180, 572576.
Sartori, A., Gatz, R., Beck, F., Rigort, A., Baumeister, W. & Plitzko, J.M. (2007). Correlative microscopy: Bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160, 135145.
Schellenberger, P., Kaufmann, R., Siebert, C.A., Hagen, C., Wodrich, H & Grünewald, K. (2014). High-precision correlating fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 4151.
Schorb, M. & Briggs, J.A.G. (2014). Correlated cryo-fluorescence and cryo-electron microscopy with spatial precision and improved sensitivity. Ultramicroscopy 143, 2432.
Schwartz, C.L., Sarbash, V.I., Ataullakhanov, F.I., McIntosh, J.R. & Nicastro, D. (2007). Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J Microsc 227(2), 98109.
Stark, T.J., Shedd, G.M., Vitarelli, J., Griffis, D.P. & Russell, P.E. (1995). H2O enhanced focused ion beam micromachining. J Vac Sci Technol B 13, 25652569.
Studer, D., Michel, M., Wohlwend, M., Hunziker, E.B. & Buschmann, M.D. (1995). Vitrification of articular cartilage by high-pressure freezing. J Microsc 179(3), 321332.
Tarascon, J.-M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359367.
van Driel, L.F., Valentijn, J.A., Valentijn, K.M., Koning, R.I. & Koster, A.J. (2009). Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells. Eur J Cell Biol 88, 669684.
Villa, E., Schaffer, M., Plitzko, J.M. & Baumeister, W. (2013). Opening windows into the cell: Focused-ion-beam milling for cryo-electron tomography. Curr Opin Struct Biol 23, 771777.
Vulović, M., Ravelli, R.G.B., van Vliet, L.J., Koster, A., Lazić, I., Lücken, U., Rullgård, H., Öktem, O. & Rieger, B. (2013). Image formation modeling in cryo-electron microscopy. J Struct Biol 183, 1932.
Weiner, S. & Addadi, L. (2011). Crystallization pathways in biomineralization. Ann Rev Mater Res 41, 2140.
Yan, R., Edwards, T.J., Pankratz, L.M., Kuhn, R.J., Lanman, J.K., Liu, J. & Jiang, W. (2015). Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law. J Struct Biol 192, 287296.
Zachman, M.J., Asenath-Smith, E., Estroff, L.A. & Kourkoutis, L.F. (2015). Revealing the internal structure and local chemistry of nanocrystals grown in hydrogel with cryo-FIB lift-out and cryo-STEM. Microsc Microanal 21(Suppl 3), 22912292.


Related content

Powered by UNSILO

Site-Specific Preparation of Intact Solid–Liquid Interfaces by Label-Free In Situ Localization and Cryo-Focused Ion Beam Lift-Out

  • Michael J. Zachman (a1) (a2), Emily Asenath-Smith (a3), Lara A. Estroff (a2) (a3) and Lena F. Kourkoutis (a1) (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.