Skip to main content
    • Aa
    • Aa

Three-Dimensional Imaging in Aberration-Corrected Electron Microscopes

  • Huolin L. Xin (a1) and David A. Muller (a2) (a3)

This article focuses on the development of a transparent and uniform understanding of possibilities for three-dimensional (3D) imaging in scanning transmission and confocal electron microscopes (STEMs and SCEMs), with an emphasis on the annular dark-field STEM (ADF-STEM), bright-field SCEM (BF-SCEM), and ADF-SCEM configurations. The incoherent imaging approximation and a 3D linear imaging model for ADF-STEM are reviewed. A 3D phase contrast model for coherent-SCEM as well as a pictorial way to find boundaries of information transfer in reciprocal space are reviewed and applied to both BF- and ADF-SCEM to study their 3D point spread functions and contrast transfer functions (CTFs). ADF-STEM is capable of detecting the depths of dopant atoms in amorphous materials but can fail for crystalline materials when channeling substantially modifies the electron propagation. For the imaging of extended (i.e., nonpointlike) features, ADF-STEM and BF-SCEM exhibit strong elongation artifacts due to the missing cone of information. ADF-SCEM shows an improvement over ADF-STEM/BF-SCEM due to its differential phase contrast eliminating slowly varying backgrounds, an effect that partially suppresses the elongation artifacts. However, the 3D CTF still has a cone of missing information that will result in some residual feature elongation as has been observed in A. Hashimoto et al., J Appl Phys160(8), 086101 (2009).

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

L.J. Allen , S.D. Findlay , M.P. Oxley & C.J. Rossouw (2003). Lattice-resolution contrast from a focused coherent electron probe. Part I. Ultramicroscopy 96(1), 4763.

P.E. Batson , N. Dellby & O.L. Krivanek (2002). Sub-angstrom resolution using aberration corrected electron optics. Nature 418(6898), 617620.

G. Behan , E.C. Cosgriff , A.I. Kirkland & P.D. Nellist (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos T R Soc A 367(1903), 38253844.

G. Black & E.H. Linfoot (1957). Spherical aberration and the information content of optical images. P R Soc Lond A Mat 239(1219), 522540.

E.C. Cosgriff , A.J. D'Alfonso , L.J. Allen , S.D. Findlay , A.I. Kirkland & P.D. Nellist (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part I: Elastic scattering. Ultramicroscopy 108(12), 15581566.

E.C. Cosgriff & P.D. Nellist (2007). A Bloch wave analysis of optical sectioning in aberration-corrected STEM. Ultramicroscopy 107(8), 626634.

A.J. D'Alfonso , E.C. Cosgriff , S.D. Findlay , G. Behan , A.I. Kirkland , P.D. Nellist & L.J. Allen (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part II: Inelastic scattering. Ultramicroscopy 108(12), 15671578.

C. Dwyer , S.D. Findlay & L.J. Allen (2008). Multiple elastic scattering of core-loss electrons in atomic resolution imaging. Phys Rev B 77(18), 184107.

J.J. Einspahr & P.M. Voyles (2006). Prospects for 3D, nanometer-resolution imaging by confocal STEM. Ultramicroscopy 106(11–12), 10411052.

P. Ercius , M. Weyland , D.A. Muller & L.M. Gignac (2006). Three-dimensional imaging of nanovoids in copper interconnects using incoherent bright field tomography. Appl Phys Lett 88, 243116.

R. Erni , M.D. Rossell , C. Kisielowski & U. Dahmen (2009). Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102, 096101.

S.D. Findlay , L.J. Allen , M.P. Oxley & C.J. Rossouw (2003). Lattice-resolution contrast from a focused coherent electron probe. Part II. Ultramicroscopy 96(1), 6581.

S.P. Frigo , Z.H. Levine & N.J. Zaluzec (2002). Submicron imaging of buried integrated circuit structures using scanning confocal electron microscopy. Appl Phys Lett 81(11), 21122114.

M. Haider , H. Rose , S. Uhlemann , E. Schwan , B. Kabius & K. Urban (1998a). A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75(1), 5360.

M. Haider , S. Uhlemann , E. Schwan , H. Rose , B. Kabius & K. Urban (1998b). Electron microscopy image enhanced. Nature 392(6678), 768769.

A. Hashimoto , M. Shimojo , K. Mitsuishi & M. Takeguchi (2009). Three-dimensional imaging of carbon nanostructures by scanning confocal electron microscopy. J Appl Phys 106(8), 086101-1086101-3.

S. Hillyard & J. Silcox (1993). Thickness effects in ADF STEM zone-axis images. Ultramicroscopy 52(3–4), 325334.

A. Howie (1979). Image-contrast and localized signal selection techniques. J Microsc-Oxf 117(Sep), 1123.

A. Howie (2009). Aberration correction: Zooming out to overview. Philos T R Soc A Mat 367(1903), 38593870.

V. Intaraprasonk , H.L. Xin & D.A. Muller (2008). Analytic derivation of optimal imaging conditions for incoherent imaging in aberration-corrected electron microscopes. Ultramicroscopy 108(11), 14541466.

E.J. Kirkland (1998). Advanced Computing in Electron Microscopy. New York: Plenum Press.

O.L. Krivanek , G.J. Corbin , N. Dellby , B.F. Elston , R.J. Keyse , M.F. Murfitt , C.S. Own , Z.S. Szilagyi & J.W. Woodruff (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108(3), 179195.

O.L. Krivanek , N. Dellby & A.R. Lupini (1999). Towards sub-Å electron beams. Ultramicroscopy 78(1–4), 111.

O.L. Krivanek , P.D. Nellist , N. Dellby , M.F. Murfitt & Z. Szilagyi (2003). Towards sub-0.5 Å electron beams. Ultramicroscopy 96(3–4), 229237.

R.F. Loane , E.J. Kirkland & J. Silcox (1988). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark field. Acta Crystallogr A 44, 912927.

P.A. Midgley & R.E. Dunin-Borkowski (2009). Electron tomography and holography in materials science. Nat Mater 8(4), 271280.

P.A. Midgley & M. Weyland (2003). 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96(3–4), 413431.

D.A. Muller , N. Nakagawa , A. Ohtomo , J.L. Grazul & H.Y. Hwang (2004). Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3. Nature 430(7000), 657661.

D.A. Muller & J. Silcox (1995). Delocalization in inelastic scattering. Ultramicroscopy 59(1–4), 195213.

P.D. Nellist , G. Behan , A.I. Kirkland & C.J.D. Hetherington (2006). Confocal operation of a transmission electron microscope with two aberration correctors. Appl Phys Lett 89, 124105.

C.J.R. Sheppard & A. Choudhury (1977). Image-formation in scanning microscope. Optica Acta 24(10), 10511073.

N. Streibl (1985). Three-dimensional imaging by a microscope. J Opt Soc Am A 2(2), 121127.

M. Takeguchi , A. Hashimoto , M. Shimojo , K. Mitsuishi & K. Furuya (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc (Tokyo) 57(4), 123127.

K.W. Urban (2008). Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321(5888), 506510.

K. van Benthem , A.R. Lupini , M. Kim , H.S. Baik , S. Doh , J.H. Lee , M.P. Oxley , S.D. Findlay , L.J. Allen , J.T. Luck & S.J. Pennycook (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87(3), 034104.

P.M. Voyles , J.L. Grazul & D.A. Muller (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96(3–4), 251273.

H.L. Xin , V. Intaraprasonk & D.A. Muller (2008c). Depth sectioning of individual dopant atoms with aberration-corrected scanning transmission electron microscopy. Appl Phys Lett 92(1), 013125–013123.

H.L. Xin & D.A. Muller (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58(3), 157165.

Z.H. Yu , D.A. Muller & J. Silcox (2004). Study of strain fields at a-Si/c-Si interface. J Appl Phys 95(7), 33623371.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *