Skip to main content

Electron-Beam-Induced Growth of TiO2 Nanostructures

  • See Wee Chee (a1), Shankar Sivaramakrishnan (a2), Renu Sharma (a3) (a4) and Jian-Min Zuo (a2)

We report the evolution of titanium dioxide nanostructures when Au nanoparticles, supported on single crystal TiO2 substrates, were heated under ∼260 Pa of flowing O2 in an environmental transmission electron microscope. Nanostructures with different morphologies were first observed around 500°C. Our measurements show that temperature, oxygen pressure, and the electron beam control the nanostructure growth. We propose a reaction-controlled growth mechanism where mobile Ti atoms generated by the electron- beam-induced reduction of TiO2 are preferentially reoxidized at the Au-TiO2 interface.

Corresponding author
Corresponding author. E-mail:
Hide All

The full description of the procedures used in this article requires the identification of certain commercial products and their suppliers. The inclusion of such information should in no way be construed as indicating that such products or suppliers are endorsed by the National Institute of Standards and Technology (NIST) or are recommended by NIST or that they are necessarily the best materials, instruments, software, or suppliers for the purposes described.

See Wee Chee is currently at Rensselaer Polytechnic Institute, Troy, New York

Hide All
Amin S.S., Nicholls A.W. & Xu T.T. (2007). A facile approach to synthesize single-crystalline rutile TiO2 one-dimensional nanostructures. Nanotechnology 18, 445609.
Baik J.M., Kim M.H., Larson C., Chen X., Guo S., Wodtke A.M. & Moskovits M. (2008). High-yield TiO2 nanowire synthesis and single nanowire field-effect transistor fabrication. App Phys Lett 92, 242111.
Bennett R.A., Stone P. & Bowker M. (1999). Pd nanoparticle enhanced re-oxidation of non-stoichiometric TiO2: STM imaging of spillover and a new form of SMSI. Catal Lett 59, 99105.
Chen X. & Mao S.S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev 107, 28912959.
Cosandey F. & Madey T.E. (2001). Growth, morphology, interfacial effects and catalytic properties of Au on TiO2. Surf Rev Lett 8, 7393.
Dai Z.R., Pan Z.W. & Wang Z.L. (2003). Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 13, 924.
Diebold U. (2003). The surface science of titanium dioxide. Surf Sci Rep 48, 53229.
Egerton R.F., Wang F. & Crozier P. (2006). Beam-induced damage to thin specimens in an intense electron probe. Microsc Microanal 12, 6571.
Henderson M.A. (1999). A surface perspective on self-diffusion in rutile TiO2. Surf Sci 419, 174187.
Khan S.U.M. & Sultana T. (2003). Photoresponse of n-TiO2 thin film and nanowire electrodes. Sol Energ Mater Sol Cells 76, 211221.
Kodambaka S., Tersoff J., Reuter M.C. & Ross F.M. (2006). Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys Rev Lett 96, 096105.
Kodambaka S., Tersoff J., Reuter M.C. & Ross F.M. (2007). Germanium nanowire growth below the eutectic temperature. Science 316, 729732.
Lee J.C., Park K.S., Kim T.G., Choi H.J. & Sung Y.M. (2006). Controlled growth of high-quality TiO2 nanowires on sapphire and silica. Nanotechnology 17, 43174321.
Li M., Hebenstreit W., Gross L., Diebold U., Henderson M.A., Jennison D.R., Shultz P.A. & Sears M.P. (1999). Oxygen-induced restructuring of the TiO2(110) surface: A comprehensive study. Surf Sci 437, 173190.
Liu Z.P., Gong X.Q., Kohanoff J., Sanchez C. & Hu P. (2003). Catalytic role of metal oxides in gold-based catalysts: A first principles study of CO oxidation on TiO2 supported Au. Phys Rev Lett 91, 266102.
McCartney M.R., Crozier P.A., Weiss J.K. & Smith D.J. (1991). Electron-beam-induced reactions at transition-metal oxide surfaces. Vacuum 42, 301308.
McCartney M.R. & Smith D.J. (1991). Studies of electron irradiation and annealing effects on TiO2 surfaces in ultrahigh vacuum using high-resolution electron microscopy. Surf Sci 250, 169178.
Sharma R. (2005). An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials. J Mater Res 20, 16951707.
Sharma R., Rez P., Brown M., Du G. & Treacy M.M.J. (2007). Dynamic observations of the effect of pressure and temperature conditions on the selective synthesis of carbon nanotubes. Nanotechnology 18, 125602.
Smith D.J., McCartney M.R. & Bursill L.A. (1987). The electron-beam-induced reduction of transition metal oxide surfaces to metallic lower oxides. Ultramicroscopy 23, 299304.
Smith R.D., Bennett R.A. & Bowker M. (2002). Measurement of the surface-growth kinetics of reduced TiO2 (110) during reoxidation using time-resolved scanning tunneling microscopy. Phys Rev B 66, 035409.
Wacaser B.A., Dick K.A., Johansson J., Borgström M.T., Deppert K. & Samuelson L. (2009). Preferential interface nucleation: An expansion of the VLS growth mechanism for nanowires. Adv Mater 21, 153165.
Wagner R.S. & Ellis W.C. (1964). Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4, 8990.
Wu J.M., Shih H.C. & Wu W.T. (2006). Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105109.
Wu J.M., Shih H.C., Wu W.T., Tseng Y.K. & Chen I.C. (2005a). Thermal evaporation growth and the luminescence property of TiO2 nanowires. J Cryst Growth 281, 384390.
Wu J.M., Wu W.T. & Shih H.C. (2005b). Characterization of single-crystalline TiO2 nanowires grown by thermal evaporation. J Electrochem Soc 152, G613G616.
Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F. & Yan H. (2003). One-dimensional nanostructures: Synthesis, characterization, and applications. Adv Mater 15, 353387.
Xiang B., Zhang Y., Wang Z., Luo X.H., Zhu Y.W., Zhang H.Z. & Yu D.P. (2005). Field-emission properties of TiO2 nanowire arrays. J Phys D Appl Phys 38, 11521155.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Chee Supplementary Video
Chee Supplementary Video 03

 Video (23.3 MB)
23.3 MB
Supplementary Materials

Chee Supplementary Video
Chee Supplementary Video 01

 Video (25.4 MB)
25.4 MB
Supplementary Materials

Chee Supplementary Video
Chee Supplementary Video 02

 Video (11.7 MB)
11.7 MB


Full text views

Total number of HTML views: 1
Total number of PDF views: 8 *
Loading metrics...

Abstract views

Total abstract views: 111 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th November 2017. This data will be updated every 24 hours.