Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 16
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Gradov, O. V. and Gradova, M. A. 2016. Methods of electron microscopy of biological and abiogenic structures in artificial gas atmospheres. Surface Engineering and Applied Electrochemistry, Vol. 52, Issue. 1, p. 117.

    Taheri, Mitra L. Stach, Eric A. Arslan, Ilke Crozier, P.A. Kabius, Bernd C. LaGrange, Thomas Minor, Andrew M. Takeda, Seiji Tanase, Mihaela Wagner, Jakob B. and Sharma, Renu 2016. Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy,

    Tao, Franklin (Feng) and Crozier, Peter A. 2016. Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chemical Reviews, Vol. 116, Issue. 6, p. 3487.

    Han, Hui-Ling Melaet, Gérôme Alayoglu, Selim and Somorjai, Gabor A. 2015. In Situ Microscopy and Spectroscopy Applied to Surfaces at Work. ChemCatChem, Vol. 7, Issue. 22, p. 3625.

    Hawkes, P.W. 2015. The correction of electron lens aberrations. Ultramicroscopy, Vol. 156, p. A1.

    Su, Dang Sheng Zhang, Bingsen and Schlögl, Robert 2015. Electron Microscopy of Solid Catalysts—Transforming from a Challenge to a Toolbox. Chemical Reviews, Vol. 115, Issue. 8, p. 2818.

    Wu, Fan and Yao, Nan 2015. Advances in windowed gas cells for in-situ TEM studies. Nano Energy, Vol. 13, p. 735.

    Damsgaard, Christian Danvad Duchstein, Linus Daniel Leonhard Sharafutdinov, Irek Nielsen, Morten Godtfred Chorkendorff, Ib and Wagner, Jakob Birkedal 2014. In situETEM synthesis of NiGa alloy nanoparticles from nitrate salt solution. Microscopy, Vol. 63, Issue. 5, p. 397.

    Frenkel, Anatoly I. Cason, Michael W. Elsen, Annika Jung, Ulrich Small, Matthew W. Nuzzo, Ralph G. Vila, Fernando D. Rehr, John J. Stach, Eric A. and Yang, Judith C. 2014. Critical review: Effects of complex interactions on structure and dynamics of supported metal catalysts. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue. 2, p. 020801.

    Hansen, Thomas W. and Wagner, Jakob B. 2014. Catalysts under Controlled Atmospheres in the Transmission Electron Microscope. ACS Catalysis, Vol. 4, Issue. 6, p. 1673.

    Jinschek, J. R. 2014. Advances in the environmental transmission electron microscope (ETEM) for nanoscale in situ studies of gas–solid interactions. Chemical Communications, Vol. 50, Issue. 21, p. 2696.

    DeLaRiva, Andrew T. Hansen, Thomas W. Challa, Sivakumar R. and Datye, Abhaya K. 2013. In situ Transmission Electron Microscopy of catalyst sintering. Journal of Catalysis, Vol. 308, p. 291.

    Oleshko, Vladimir P. and Howe, James M. 2013.

    Suzuki, Makoto Yaguchi, Toshie and Zhang, Xiao Feng 2013. High-resolution environmental transmission electron microscopy: modeling and experimental verification. Microscopy, Vol. 62, Issue. 4, p. 437.

    Takeda, Seiji and Yoshida, Hideto 2013. Atomic-resolution environmental TEM for quantitativein-situmicroscopy in materials science. Microscopy, Vol. 62, Issue. 1, p. 193.

    Yoshida, K. Tominaga, T. Hanatani, T. Tagami, A. Sasaki, Y. Yamasaki, J. Saitoh, K. and Tanaka, N. 2013. Key factors for the dynamic ETEM observation of single atoms. Microscopy, Vol. 62, Issue. 6, p. 571.


Environmental Transmission Electron Microscopy in an Aberration-Corrected Environment

  • Thomas W. Hansen (a1) and Jakob B. Wagner (a1)
  • DOI:
  • Published online: 12 June 2012

The increasing use of environmental transmission electron microscopy (ETEM) in materials science provides exciting new possibilities for investigating chemical reactions and understanding both the interaction of fast electrons with gas molecules and the effect of the presence of gas on high-resolution imaging. A gaseous atmosphere in the pole-piece gap of the objective lens of the microscope alters both the incoming electron wave prior to interaction with the sample and the outgoing wave below the sample. Whereas conventional TEM samples are usually thin (below 100 nm), the gas in the environmental cell fills the entire gap between the pole pieces and is thus not spatially localized. By using an FEI Titan environmental transmission electron microscope equipped with a monochromator and an aberration corrector on the objective lens, we have investigated the effects on imaging and spectroscopy caused by the presence of the gas.

Corresponding author
Corresponding author. E-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

A. Borgna , F. Lenormand , T. Garetto , C.R. Apesteguia & B. Moraweck (1992). Sintering of Pt/Al2O3 reforming catalysts—EXAFS study of the behavior of metal particles under oxidizing atmosphere. Catal Lett 13, 175188.

E.D. Boyes & P.L. Gai (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.

S.R. Challa , A.T. Delariva , T.W. Hansen , S. Helveg , J. Sehested , P.L. Hansen , F. Garzon & A.K. Datye (2011). Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening. J Am Chem Soc 133, 2067220675.

Q. Chaudhry , M. Scotter , J. Blackburn , B. Ross , A. Boxall , L. Castle , R. Aitken & R. Watkins (2008). Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25, 241258.

J.F. Creemer , S. Helveg , G.H. Hoveling , S. Ullmann , A.M. Molenbroek , P.M. Sarro & H.W. Zandbergen (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.

N. De Jonge , W.C. Bigelow & G.M. Veith (2010). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.

P.C. Flynn & S.E. Wanke (1974). A model of supported metal catalyst sintering—2. Application of model. J Catal 34, 400410.

C.O. Girit , J.C. Meyer , R. Erni , M.D. Rossell , C. Kisielowski , L. Yang , C.H. Park , M.F. Crommie , M.L. Cohen , S.G. Louie & A. Zettl (2009). Graphene at the edge: Stability and dynamics. Science 323, 17051708.

C.G. Granqvist & R.A. Buhrman (1976). Size distributions for supported metal catalysts—Coalescence growth versus Ostwald ripening. J Catal 42, 477479.

V.G. Gryaznov , A.M. Kaprelov & A.Y. Belov (1991). Real temperature of nanoparticles in electron microscope beams. Philos Mag Lett 63, 275279.

W. Hampe (1958). Beitrag zur Deutung der anomalen optichen Eigenschaften feinstteiliger Metallkolloide in grosser Konzentration. 1. Bestimmung des Fullfaktors dunner Schichten eines Kolloids Gold-SiO2. Z Phys 152, 470475.

T.W. Hansen , J.B. Wagner & R.E. Dunin-Borkowski (2010). Aberration corrected and monochromated environmental transmission electron microscopy: Challenges and prospects for materials science. Mater Sci Technol 26, 13381344.

H. Hashimoto & T. Naiki (1968). High temperature gas reaction specimen chamber for an electron microscope. Jpn J Appl Phys 7, 946952.

D.S. Herman & T.N. Rhodin (1966). Electrical conduction between metallic microparticles. J Appl Phys 37, 15941602.

J.M. Howe , T. Yokota , M. Murayama & W.A. Jesser (2004). Effects of heat and electron irradiation on the melting behavior of Al-Si alloy particles and motion of the Al nanosphere within. J Electron Microsc 53, 107114.

F.B. Rasmussen , J. Sehested , H.T. Teunissen , A.M. Molenbroek & B.S. Clausen (2004). Sintering of Ni/Al2O3 catalysts studied by anomalous small angle X-ray scattering. Appl Catal A 267, 165173.

E. Ruska (1942). Article on the super-microscopic image in high pressures. Kolloid-Z 100, 212219.

O.V. Salata (2004). Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2, 3.

S.B. Simonsen , I. Chorkendorff , S. Dahl , M. Skoglundh , J. Sehested & S. Helveg (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132, 79687975.

B.W. Smith & D.E. Luzzi (2001). Electron irradiation effects in single wall carbon nanotubes. J Appl Phys 90, 35093515.

I. Sychugov , Y. Nakayama & K. Mitsuishi (2010). Sub-10 nm crystalline silicon nanostructures by electron beam induced deposition lithography. Nanotechnology 21, 285307.

K. Tiede , A.B.A. Boxall , S.P. Tear , J. Lewis , H. David & M. Hassellov (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25, 795821.

L. Tsetseris & S.T. Pantelides (2009). Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes. Carbon 47, 901908.

W.F. van Dorp , I. Lazic , A. Beyer , A. Golzhauser , J.B. Wagner , T.W. Hansen & C.W. Hagen (2011). Ultrahigh resolution focused electron beam induced processing: The effect of substrate thickness. Nanotechnology 22, 115303.

S.E. Wanke (1977). Sintering mechanism of supported metal catalysts. J Catal 46, 234237.

A. Więckowski , E. Savinova & C. Vayenas (2003). Catalysis and Electrocatalysis at Nanoparticle Surfaces. New York: Marcel Dekker.

P. Wynblatt & N.A. Gjostein (1975). Supported metal crystallites. Prog Solid State Chem 9, 2158.

T. Yaguchi , M. Suzuki , A. Watabe , Y. Nagakubo , K. Ueda & T. Kamino (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *