Skip to main content Accessibility help

Evaluation of Analysis Conditions for Laser-Pulsed Atom Probe Tomography: Example of Cemented Tungsten Carbide

  • Zirong Peng (a1), Pyuck-Pa Choi (a1) (a2), Baptiste Gault (a1) and Dierk Raabe (a1)

Cemented tungsten carbide has been analyzed using laser-pulsed atom probe tomography (APT). The influence of experimental parameters, including laser pulse energy, pulse repetition rate, and specimen base temperature, on the acquired data were evaluated from different aspects, such as mass spectrum, chemical composition, noise-to-signal ratio, and multiple events. Within all the applied analysis conditions, only 1 MHz pulse repetition rate led to a strong detector saturation effect, resulting in a largely biased chemical composition. A comparative study of the laser energy settings showed that an ~12 times higher energy was required for the less focused green laser of the LEAPTM 3000X HR system to achieve a similar evaporation field as the finer spot ultraviolet laser of the LEAPTM 5000 XS system.

Corresponding author
* Corresponding authors.;
Hide All
Andrén, H.-O. (2001). Microstructures of cemented carbides. Mater Des 22, 491498.
Angseryd, J., Liu, F., Andrén, H.-O., Gerstl, S.S.A. & Thuvander, M. (2011). Quantitative APT analysis of Ti(C,N). Ultramicroscopy 111, 609614.
Bhadeshia, H.K.D.H. & Waugh, A.R. (1982). Bainite: An atom-probe study of the incomplete reaction phenomenon. Acta Metall 30, 775784.
Blavette, D., Bostel, A., Sarrau, J.M., Deconihout, B. & Menand, A. (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.F. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13, 418427.
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107, 720725.
Da Costa, G., Vurpillot, F., Bostel, A., Bouet, M. & Deconihout, B. (2005). Design of a delay-line position-sensitive detector with improved performance. Rev Sci Instrum 76, 13304.
De Geuser, F., Gault, B., Bostel, A. & Vurpillot, F. (2007). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601, 536543.
Diercks, D.R. & Gorman, B.P. (2015). Nanoscale measurement of laser-induced temperature rise and field evaporation effects in CdTe and GaN. J Phys Chem C 119, 2062320631.
Fomenko, V.S. (1966). Chapter 1 chemical elements & Chapter 2 chemical compounds. In Handbook of Thermionic Properties: Electronic Work Functions and Richardson Constants of Elements and Compounds, Samsonov, G. V. (Ed.), pp. 5356 & 98. New York: Plenum Press Data Division.
Gault, B., Moody, M.P., Cairney, J.M. & Ringer, S.P. (2012). Atom Probe Microscopy. New York: Springer.
Gault, B., Saxey, D.W., Ashton, M.W., Sinnott, S.B., Chiaramonti, A.N., Moody, M.P. & Schreiber, D.K. (2016). Behavior of molecules and molecular ions near a field emitter. New J Phys 18, 33031.
Gipson, G.S. & Eaton, H.C. (1980). The electric field distribution in the field ion microscope as a function of specimen shank. J Appl Phys 51, 5537.
Gomer, R. (1961). Chapters 1–2. Field emission and field ionization, pp. 2–49. Cambridge: Harvard University Press.
Herbig, M., Raabe, D., Li, Y.J., Choi, P., Zaefferer, S. & Goto, S. (2014). Atomic-scale quantification of grain boundary segregation in nanocrystalline material. Phys Rev Lett 112, 126103.
Houard, J., Vella, A., Vurpillot, F. & Deconihout, B. (2010). Optical near-field absorption at a metal tip far from plasmonic resonance. Phys Rev B 81, 125411.
Hudson, D., Smith, G.D.W. & Gault, B. (2011). Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111, 480486.
Hyde, J.M., Cerezo, A., Setna, R.P., Warren, P.J. & Smith, G.D.W. (1994). Lateral and depth scale calibration of the position sensitive atom probe. Appl Surf Sci 76–77, 382391.
Isik, M.I., Kostka, A., Yardley, V.A., Pradeep, K.G., Duarte, M.J., Choi, P.P., Raabe, D. & Eggeler, G. (2015). The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels. Acta Mater 90, 94104.
Jagutzki, O., Cerezo, A., Czasch, A., Dörner, R., Hattaß, M., Mergel, V., Spillmann, U., Ullmann-Pfleger, K., Weber, T., Schmidt-Bocking, H. & Smith, G.D.W. (2002). Multiple hit readout of a microchannel plate detector with a three-layer delay-line anode. IEEE Trans Nucl Sci 49, 24772483.
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52, 5320.
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 1184.
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 31101.
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116, 273301.
Kitaguchi, H.S., Lozano-Perez, S. & Moody, M.P. (2014). Quantitative analysis of carbon in cementite using pulsed laser atom probe. Ultramicroscopy 147, 5160.
Kobayashi, Y., Takahashi, J. & Kawakami, K. (2011). Anomalous distribution in atom map of solute carbon in steel. Ultramicroscopy 111, 600603.
Kolli, R.P. & Meisenkothen, F. (2014). The influence of experimental parameters and specimen geometry on the mass spectra of copper during pulsed-laser atom-probe tomography. Microsc Microanal 20, 17151726.
La Fontaine, A., Gault, B., Breen, A., Stephenson, L., Ceguerra, A.V, Yang, L., Dinh Nguyen, T., Zhang, J., Young, D.J. & Cairney, J.M. (2015). Interpreting atom probe data from chromium oxide scales. Ultramicroscopy 159, 354359.
Lee, M.J.G., Reifenberger, R., Robins, E.S. & Lindenmayr, H.G. (1980). Thermally enhanced field emission from a laser-illuminated tungsten tip: Temperature rise of tip. J Appl Phys 51, 4996.
Li, Y.J., Choi, P., Borchers, C., Westerkamp, S., Goto, S., Raabe, D. & Kirchheim, R. (2011). Atomic-scale mechanisms of deformation-induced cementite decomposition in pearlite. Acta Mater 59, 39653977.
Li, Y., Raabe, D., Herbig, M., Choi, P.-P., Goto, S., Kostka, A., Yarita, H., Borchers, C. & Kirchheim, R. (2014). Segregation stabilizes nanocrystalline bulk steel with near theoretical strength. Phys Rev Lett 113, 106104.
Liu, H.F. & Tsong, T.T. (1984). Numerical calculation of the temperature evolution and profile of the field ion emitter in the pulsed-laser time-of-flight atom probe. Rev Sci Instrum 55, 1779.
Loi, S.T., Gault, B., Ringer, S.P., Larson, D.J. & Geiser, B.P. (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.
Marceau, R.K.W., Choi, P. & Raabe, D. (2013). Understanding the detection of carbon in austenitic high-Mn steel using atom probe tomography. Ultramicroscopy 132, 239247.
Marquis, E.A. & Gault, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104, 84914.
Meisenkothen, F., Steel, E.B., Prosa, T.J., Henry, K.T. & Prakash Kolli, R. (2015). Effects of detector dead-time on quantitative analyses involving boron and multi-hit detection events in atom probe tomography. Ultramicroscopy 159, 101111.
Miller, M.K., Angelini, P., Cerezo, A. & More, K.L. (1989). Pulsed laser atom probe characterization of silicon carbide. J Phys Colloq 50, C8-459C8-464.
Miller, M.K., Beaven, P.A., Brenner, S.S. & Smith, G.D.W. (1983). An atom probe study of the aging of iron-nickel-carbon martensite. Metall Trans A 14, 10211024.
Miller, M.K. & Smith, G.D.W. (1977). Atom probe microanalysis of a pearlitic steel. Met Sci 11, 249253.
Miyamoto, G., Shinbo, K. & Furuhara, T. (2012). Quantitative measurement of carbon content in Fe–C binary alloys by atom probe tomography. Scr Mater 67, 9991002.
Müller, E.W. (1968). The atom-probe field ion microscope. Rev Sci Instrum 39, 83.
Müller, M., Saxey, D.W., Smith, G.D.W. & Gault, B. (2011). Some aspects of the field evaporation behaviour of GaSb. Ultramicroscopy 111, 487492.
Perea, D.E., Wijaya, E., Lensch-Falk, J.L., Hemesath, E.R. & Lauhon, L.J. (2008). Tomographic analysis of dilute impurities in semiconductor nanostructures. J Solid State Chem 181, 16421649.
Podchernyaeva, I.A., Samsonov, G.V & Fomenko, V.S. (1969). Differences in emission parameters and adsorption properties of single-crystal faces. Soviet Phys J 12, 721725.
Rolander, U. & Andrén, H.-O. (1989 a). Evaluation of atom-probe spectra from titanium carbonitride. J Phys Colloq 50, C8-371C8-376.
Rolander, U. & Andrén, H.-O. (1989 b). Statistical correction for pile-up in the atom-probe detector system. J Phys Colloq 50, C8-529C8-534.
Santhanagopalan, D., Schreiber, D.K., Perea, D.E., Martens, R.L., Janssen, Y., Khalifah, P. & Meng, Y.S. (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148, 5766.
Saxey, D.W. (2011). Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111, 473479.
Schreiber, D.K., Chiaramonti, A.N., Gordon, L.M. & Kruska, K. (2014). Applicability of post-ionization theory to laser-assisted field evaporation of magnetite. Appl Phys Lett 105, 244106.
Seol, J.-B., Raabe, D., Choi, P., Park, H.-S., Kwak, J.-H. & Park, C.-G. (2013). Direct evidence for the formation of ordered carbides in a ferrite-based low-density Fe–Mn–Al–C alloy studied by transmission electron microscopy and atom probe tomography. Scr Mater 68, 348353.
Sha, W., Chang, L., Smith, G.D.W. & Mittemeijer, E.J. (1992). Some aspects of atom-probe analysis of Fe-C and Fe-N systems. Surf Sci 266, 416423.
Shariq, A., Mutas, S., Wedderhoff, K., Klein, C., Hortenbach, H., Teichert, S., Kücher, P. & Gerstl, S.S.A. (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109, 472479.
Stephan, T., Heck, P.R., Isheim, D. & Lewis, J.B. (2015). Correction of dead time effects in laser-induced desorption time-of-flight mass spectrometry: Applications in atom probe tomography. Int J Mass Spectrom 379, 4651.
Takahashi, J., Kawakami, K. & Kobayashi, Y. (2011). Quantitative analysis of carbon content in cementite in steel by atom probe tomography. Ultramicroscopy 111, 12331238.
Tang, F., Gault, B., Ringer, S.P. & Cairney, J.M. (2010). Optimization of pulsed laser atom probe (PLAP) for the analysis of nanocomposite Ti–Si–N films. Ultramicroscopy 110, 836843.
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.
Thuvander, M., Kvist, A., Johnson, L.J.S., Weidow, J. & Andrén, H.-O. (2013). Reduction of multiple hits in atom probe tomography. Ultramicroscopy 132, 8185.
Thuvander, M., Weidow, J., Angseryd, J., Falk, L.K.L., Liu, F., Sonestedt, M., Stiller, K. & Andrén, H.-O. (2011). Quantitative atom probe analysis of carbides. Ultramicroscopy 111, 604608.
Tsong, T.T. (1985). Orientational and isotope effects in field dissociation by atomic tunneling of compound ions. Phys Rev Lett 55, 28262828.
Tytko, D., Choi, P.-P., Klöwer, J., Kostka, A., Inden, G. & Raabe, D. (2012). Microstructural evolution of a Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography. Acta Mater 60, 17311740.
Vurpillot, F., Gault, B., Vella, A., Bouet, M. & Deconihout, B. (2006). Estimation of the cooling times for a metallic tip under laser illumination. Appl Phys Lett 88, 94105.
Vurpillot, F., Houard, J., Vella, A. & Deconihout, B. (2009). Thermal response of a field emitter subjected to ultra-fast laser illumination. J Phys D Appl Phys 42, 125502.
Yao, L., Gault, B., Cairney, J.M. & Ringer, S.P. (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90, 121129.
Yao, M.J., Dey, P., Seol, J.-B., Choi, P., Herbig, M., Marceau, R.K.W., Hickel, T., Neugebauer, J. & Raabe, D. (2016). Combined atom probe tomography and density functional theory investigation of the Al off-stoichiometry of κ-carbides in an austenitic Fe–Mn–Al–C low density steel. Acta Mater 106, 229238.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Peng supplementary material
Peng supplementary material 1

 Unknown (655 KB)
655 KB
Supplementary materials

Peng supplementary material
Table S1

 Word (13 KB)
13 KB
Supplementary materials

Peng supplementary material
Peng supplementary material 2

 Unknown (2.3 MB)
2.3 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed