Skip to main content
    • Aa
    • Aa

Gold Nanoparticle Uptake in Whole Cells in Liquid Examined by Environmental Scanning Electron Microscopy

  • Diana B. Peckys (a1) and Niels de Jonge (a1) (a2)

The size of gold nanoparticles (AuNPs) can influence various aspects of their cellular uptake. Light microscopy is not capable of resolving most AuNPs, while electron microscopy (EM) is not practically capable of acquiring the necessary statistical data from many cells and the results may suffer from various artifacts. Here, we demonstrate the use of a fast EM method for obtaining high-resolution data from a much larger population of cells than is usually feasible with conventional EM. A549 (human lung carcinoma) cells were subjected to uptake protocols with 10, 15, or 30 nm diameter AuNPs with adsorbed serum proteins. After 20 min, 24 h, or 45 h, the cells were fixed and imaged in whole in a thin layer of liquid water with environmental scanning electron microscopy equipped with a scanning transmission electron microscopy detector. The fast preparation and imaging of 145 whole cells in liquid allowed collection of nanoscale data within an exceptionally small amount of time of ~80 h. Analysis of 1,041 AuNP-filled vesicles showed that the long-term AuNP storing lysosomes increased their average size by 80 nm when AuNPs with 30 nm diameter were uptaken, compared to lysosomes of cells incubated with AuNPs of 10 and 15 nm diameter.

Corresponding author
* Corresponding author. E-mail:
Hide All
AlkilanyA.M. & MurphyC.J. (2010). Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res 12(7), 23132333.
AronovaM.A. & LeapmanR.D. (2013). Elemental mapping by electron energy loss spectroscopy in biology. Methods Mol Biol 950, 209226.
BaruaS. & RegeK. (2009). Cancer-cell-phenotype-dependent differential intracellular trafficking of unconjugated quantum dots. Small 5(3), 370376.
BaudoinJ.P., JeromeW.G., KubelC. & de JongeN. (2013). Whole-cell analysis of low-density lipoprotein uptake by macrophages using STEM tomography. PLoS One 8(1), e55022.
BhattacharyyaS., BhattacharyaR., CurleyS., McNivenM.A. & MukherjeeP. (2010). Nanoconjugation modulates the trafficking and mechanism of antibody induced receptor endocytosis. Proc Natl Acad Sci USA 107(33), 1454114546.
BognerA., TholletG., BassetD., JouneauP.H. & GauthierC. (2005). Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104, 290301.
BraetF., De ZangerR. & WisseE. (1997). Drying cells for SEM, AFM and TEM by hexamethyldisilazane: A study on hepatic endothelial cells. J Microsc 186(Pt 1), 8487.
BrandenbergerC., MuhlfeldC., AliZ., LenzA.G., SchmidO., ParakW.J., GehrP. & Rothen-RutishauserB. (2010). Quantitative evaluation of cellular uptake and trafficking of plain and polyethylene glycol-coated gold nanoparticles. Small 6(15), 16691678.
BrightN.A., ReavesB.J., MullockB.M. & LuzioJ.P. (1997). Dense core lysosomes can fuse with late endosomes and are re-formed from the resultant hybrid organelles. J Cell Sci 110(Pt 17), 20272040.
ChithraniB.D. & ChanW.C. (2007). Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett 7(6), 15421550.
ChithraniB.D., GhazaniA.A. & ChanW.C. (2006). Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4), 662668.
ChoE.C., ZhangQ. & XiaY.N. (2011). The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6(6), 385391.
CronholmP., KarlssonH.L., HedbergJ., LoweT.A., WinnbergL., ElihnK., WallinderI.O. & MöllerL. (2013). Intracellular uptake and toxicity of Ag and CuO nanoparticles: A comparison between nanoparticles and their corresponding metal ions. Small 9(7), 970982.
De JongW.H., HagensW.I., KrystekP., BurgerM.C., SipsA.N.J.A.M. & GeertsmaR.E. (2008). Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29(12), 19121919.
de JongeN., PeckysD.B., KremersG.J. & PistonD.W. (2009a). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106, 21592164.
de JongeN., PeckysD.B., KremersG.J. & PistonD.W. (2009b). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci USA 106(7), 21592164.
DreadenE.C., AlkilanyA.M., HuangX., MurphyC.J. & El-SayedM.A. (2012). The golden age: Gold nanoparticles for biomedicine. Chem Soc Rev 41(7), 27402779.
DukesM.J., RamachandraR., BaudoinJ.P., Gray JeromeW. & de JongeN. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174(3), 552562.
FosterK.A., OsterC.G., MayerM.M., AveryM.L. & AudusK.L. (1998). Characterization of the A549 cell line as a type II pulmonary epithelial cell model for drug metabolism. Exp Cell Res 243(2), 359366.
GhoshP., HanG., DeM., KimC.K. & RotelloV.M. (2008). Gold nanoparticles in delivery applications. Adv Drug Delivery Rev 60(11), 13071315.
GlavinovicM.I., VitaleM.L. & TrifaroJ.M. (1998). Comparison of vesicular volume and quantal size in bovine chromaffin cells. Neuroscience 85(3), 957968.
GoldsteinJ.L., AndersonR.G. & BrownM.S. (1979). Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 279(5715), 679685.
GruenbergJ., GriffithsG. & HowellK.E. (1989). Characterization of the early endosome and putative endocytic carrier vesicles in vivo and with an assay of vesicle fusion in vitro . J Cell Biol 108(4), 13011316.
HopkinsC.R. & TrowbridgeI.S. (1983). Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Biol 97(2), 508521.
HostaL., Pla-RocaM., ArbiolJ., Lopez-IglesiasC., SamitierJ., CruzL.J., KoganM.J. & AlbericioF. (2008). Conjugation of kahalalide F with gold nanoparticles to enhance in vitro antitumoral activity. Bioconjugate Chem 20(1), 138146.
HuangX.H., JainP.K., El-SayedI.H. & El-SayedM.A. (2007). Gold nanoparticles: Interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2(5), 681693.
IversenT.-G., SkotlandT. & SandvigK. (2011). Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 6(2), 176185.
KirkS., SkepperJ. & DonaldA.M. (2009). Application of environmental scanning electron microscopy to determine biological surface structure. J Microsc 233(2), 205224.
KrpetićZ.E., PortaF., CanevaE., Dal SantoV. & ScariG. (2010). Phagocytosis of biocompatible gold nanoparticles. Langmuir 26(18), 1479914805.
LeapmanR.D. & AndrewsS.B. (1991). Analysis of directly frozen macromolecules and tissues in the field-emission STEM. J Microsc 161(Pt 1), 319.
LévyR., ShaheenU., CesbronY. & SéeV. (2010). Gold nanoparticles delivery in mammalian live cells: A critical review. Nano Rev 1, 4889.
MaX.W., WuY.Y., JinS.B., TianY., ZhangX.N., ZhaoY.L., YuL. & LiangX.J. (2011). Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5(11), 86298639.
MurphyC.J., GoleA.M., StoneJ.W., SiscoP.N., AlkilanyA.M., GoldsmithE.C. & BaxterS.C. (2008). Gold nanoparticles in biology: Beyond toxicity to cellular imaging. Acc Chem Res 41(12), 17211730.
MurphyG.E., NarayanK., LowekampB.C., HartnellL.M., HeymannJ.A., FuJ. & SubramaniamS. (2011). Correlative 3D imaging of whole mammalian cells with light and electron microscopy. J Struct Biol 176(3), 268278.
MuscarielloL., RossoF., MarinoG., GiordanoA., BarbarisiM., CafieroG. & BarbarisiA. (2005). A critical overview of ESEM applications in the biological field. J Cell Physiol 205(3), 328334.
NativoP., PriorI.A. & BrustM. (2008). Uptake and intracellular fate of surface-modified gold nanoparticles. ACS Nano 2(8), 16391644.
NishiyamaH., SugaM., OguraT., MaruyamaY., KoizumiM., MioK., KitamuraS. & SatoC. (2010). Atmospheric scanning electron microscope observes cells and tissues in open medium through silicon nitride film. J Struct Biol 169(3), 438449.
PanY., NeussS., LeifertA., FischlerM., WenF., SimonU., SchmidG., BrandauW. & Jahnen-DechentW. (2007). Size-dependent cytotoxicity of gold nanoparticles. Small 3(11), 19411949.
PeckysD.B. & de JongeN. (2011). Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy. Nano Lett 11(4), 17331738.
ReimerL. & KohlH. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.
RingE.A., PeckysD.B., DukesM.J., BaudoinJ.P. & de JongeN. (2011). Silicon nitride windows for electron microscopy of whole cells. J Microsc 243(3), 273283.
RosmanC., PierratS., HenkelA., TarantolaM., SchneiderD., SunnickE., JanshoffA. & SönnichsenC. (2012). A new approach to assess gold nanoparticle uptake by mammalian cells: Combining optical dark-field and transmission electron microscopy. Small 8(23), 36833690.
SchrandA.M., SchlagerJ.J., DaiL. & HussainS.M. (2010). Preparation of cells for assessing ultrastructural localization of nanoparticles with transmission electron microscopy. Nat Protoc 5(4), 744757.
ShuklaR., BansalV., ChaudharyM., BasuA., BhondeR.R. & SastryM. (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 21(23), 1064410654.
SiegwartD.J., SrinivasanA., BencherifS.A., KarunanidhiA., OhJ.K., VaidyaS., JinR., HollingerJ.O. & MatyjaszewskiK. (2009). Cellular uptake of functional nanogels prepared by inverse miniemulsion ATRP with encapsulated proteins, carbohydrates, and gold nanoparticles. Biomacromolecules 10(8), 23002309.
SoenenS.J., Rivera-GilP., MontenegroJ.-M.A., ParakW.J., De SmedtS.C. & BraeckmansK. (2011). Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6(5), 446465.
SousaA.A., AzariA.A., ZhangG. & LeapmanR.D. (2011). Dual-axis electron tomography of biological specimens: Extending the limits of specimen thickness with bright-field STEM imaging. J Struct Biol 174(1), 107114.
StokesD.J., ReaS.M., BestS.M. & BonfieldW. (2003). Electron microscopy of mammalian cells in the absence of fixing, freezing, dehydration, or specimen coating. Scanning 25(4), 181184.
StoorvogelW. (2008). Analyzing endosomes in nonsectioned cells by transmission electron microscopy. In Exocytosis and Endocytosis, IvanovA. (Ed.), pp. 247257. New York: Humana Press.
TantraR. & KnightA. (2010). Cellular uptake and intracellular fate of engineered nanoparticles: A review on the application of imaging techniques. Nanotoxicology 5(3), 381392.
ThakorA.S., JokerstJ., ZavaletaC., MassoudT.F. & GambhirS.S. (2011). Gold nanoparticles: A revival in precious metal administration to patients. Nano Lett 11(10), 40294036.
ThibergeS., NechushtanA., SprinzakD., GileadiO., BeharV., ZikO., ChowersY., MichaeliS., SchlessingerJ. & MosesE. (2004). Scanning electron microscopy of cells and tissues under fully hydrated conditions. Proc Natl Acad Sci USA 101(10), 33463351.
van DeursB., HolmP.K., KayserL. & SandvigK. (1995). Delivery to lysosomes in the human carcinoma cell line HEp-2 involves an actin filament-facilitated fusion between mature endosomes and preexisting lysosomes. Eur J Cell Biol 66(4), 309323.
WangZ.X. & MaL.N. (2009). Gold nanoparticle probes. Coord Chem Rev 253(11-12), 16071618.
WeintraubK. (2013). Biomedicine: The new gold standard. Nature 495(7440), S14S16.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 133 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.