Skip to main content Accessibility help
×
Home

High Contrast Magnetic and Nonmagnetic Sample Current Microscopy for Bulk and Transparent Samples Using Soft X-Rays

  • Daniela Nolle (a1), Markus Weigand (a1), Gisela Schütz (a1) and Eberhard Goering (a1)

Abstract

The soft X-ray energy range provides important detection capabilities for a wide range of material systems, e.g., the K-edge behavior of biological materials or magnetic contrast imaging at the L2,3- and M4,5-edges, respectively, using the X-ray magnetic circular dichroism effect. The need for thinned samples due to the short penetration depth of soft X-rays is a limiting factor for microscopic imaging in transmission microscopy. In contrast, the more surface sensitive photoelectron emission microscopy allows the X-ray microscopic investigation of nontransparent bulk samples, but only small magnetic fields and very smooth surfaces are possible. As both high magnetic fields as well as bulk samples are important for magnetic imaging, we present total electron yield (TEY) microscopy results using the total sample current detection performed at the new ultra high vacuum scanning microscope “MAXYMUS” at HZB/BESSY II. We compare synchronous measurements in TEY and transmission mode to demonstrate the capabilities of TEY microscopy. Pictures and spectra with high absorption contrast and three-dimensional-like edge enhancement are observed as known for scanning electron microscopy. This unveils details on smallest length scales of the surface morphology. Furthermore, surface sensitive in- and out-of-plane magnetic TEY measurements at nontransparent samples are shown.

Copyright

Corresponding author

Corresponding author. E-mail: nolle@mf.mpg.de

References

Hide All
Abbate, M., Goedkoop, J.B., Degroot, F.M.F., Grioni, M., Fuggle, J.C., Hofmann, S., Petersen, H. & Sacchi, M. (1992). Probing depth of soft X-ray absorption spectroscopy measured in total-electron-yield mode. Surf Interface Anal 18(1), 6569.
Ade, H. & Stoll, H. (2009). Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nat Mater 8(4), 281290.
Ade, H., Zhang, X., Cameron, S., Costello, C., Kirz, J. & Williams, S. (1992). Chemical contrast in X-ray microscopy and spatially resolved XANES spectroscopy of organic specimens. Science 258(5084), 972975.
Attwood, D. (1999). Soft X-Rays and Extreme Ultraviolet Radiation: Principles and Applications, Chaps. 1–9. Cambridge, UK: Cambridge University Press.
Carra, P., Thole, B.T., Altarelli, M. & Wang, X.D. (1993). X-ray circular-dichroism and local magnetic fields. Phys Rev Lett 70(5), 694697.
Chao, W.L., Anderson, E.H., Harteneck, B.D., Liddle, J.A. & Attwood, D.T. (2007). Soft X-ray zone plate microscopy to 10 nm resolution with XM-1 at the ALS. In Synchrotron Radiation Instrumentation, Parts 1 and 2, Choi, J.Y. & Rah, S. (Eds.), pp. 12691273. Melville, NY: American Institute of Physics.
Chao, W.L., Harteneck, B.D., Liddle, J.A., Anderson, E.H. & Attwood, D.T. (2005). Soft X-ray microscopy at a spatial resolution better than 15 nm. Nature 435(7046), 12101213.
Chen, C.T., Idzerda, Y.U., Lin, H.J., Smith, N.V., Meigs, G., Chaban, E., Ho, G.H., Pellegrin, E. & Sette, F. (1995). Experimental confirmation of the X-ray magnetic circular-dichroism sum-rules for iron and cobalt. Phys Rev Lett 75(1), 152155.
Durr, H.A., Eimuller, T., Elmers, H.J., Eisebitt, S., Farle, M., Kuch, W., Matthes, F., Martins, M., Mertins, H.C., Oppeneer, P.M., Plucinski, L., Schneider, C.M., Wende, H., Wurth, W. & Zabel, H. (2009). A closer look into magnetism: Opportunities with synchrotron radiation. IEEE T Magn 45(1), 1557.
Eisebitt, S., Luning, J., Schlotter, W.F., Lorgen, M., Hellwig, O., Eberhardt, W. & Stohr, J. (2004). Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432(7019), 885888.
Figuerola, A., Fiore, A., DiCorato, R., Falqui, A., Giannini, C., Micotti, E., Lascialfari, A., Corti, M., Cingolani, R., Pellegrino, T., Cozzoli, P.D. & Manna, L. (2008). One-pot synthesis and characterization of size-controlled bimagnetic FePt-iron oxide heterodimer nanocrystals. J Am Chem Soc 130(4), 14771487.
Fischer, P., Eimuller, T., Schutz, G., Guttmann, P., Schmahl, G. & Bayreuther, G. (2000). Imaging magnetic structures with a transmission X-ray microscope. AIP Conf Proc 507, 205212.
Freeman, M.R. & Choi, B.C. (2001). Advances in magnetic microscopy. Science 294(5546), 14841488.
Goering, E., Gold, S., Lafkioti, M. & Schütz, G. (2006). Vanishing Fe 3D orbital moments in single-crystalline magnetite. Europhys Lett 73(1), 97103.
Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R. & Riess, H. (2002). The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hem 43(1), 3356.
Hub, C., Wenzel, S., Raabe, J., Ade, H. & Fink, R.H. (2010). Surface sensitivity in scanning transmission X-ray microspectroscopy using secondary electron detection. Rev Sci Instrum 81(3), 033704-1–5.
Kirz, J., Jacobsen, C. & Howells, M. (1995). Soft-X-ray microscopes and their biological applications. Q Rev Biophys 28(1), 33130.
Kirz, J. & Rarback, H. (1985). Soft-X-ray microscopes. Rev Sci Instrum 56(1), 113.
Ma, D.L., Guan, J.W., Normandin, F., Denommee, S., Enright, G., Veres, T. & Simard, B. (2006). Multifunctional nano-architecture for biomedical applications. Chem Mater 18(7), 19201927.
Marchesini, S., Boutet, S., Sakdinawat, A.E., Bogan, M.J., Bajt, S., Barty, A., Chapman, H.N., Frank, M., Hau-Riege, S.P., Szoke, A., Cui, C., Shapiro, D.A., Howells, M.R., Spence, J.C.H., Shaevitz, J.W., Lee, J.Y., Hajdu, J. & Seibert, M.M. (2008). Massively parallel X-ray holography. Nat Photon 2(9), 560563.
Moser, A., Takano, K., Margulies, D.T., Albrecht, M., Sonobe, Y., Ikeda, Y., Sun, S. & Fullerton, E.E. (2002). Magnetic recording: Advancing into the future. J Phys D: Appl Phys 35(19), R157R167.
Nakajima, R., Stöhr, J. & Idzerda, Y.U. (1999). Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys Rev B 59(9), 6421.
Nolle, D., Goering, E., Tietze, T., Schutz, G., Figuerola, A. & Manna, L. (2009). Structural and magnetic deconvolution of FePt/FeOx-nanoparticles using X-ray magnetic circular dichroism. New J Phys 11, 033034.
Pouliquen, D., Perdrisot, R., Ermias, A., Akoka, S., Jallet, P. & Le Jeune, J.J. (1989). Superparamagnetic iron oxide nanoparticles as a liver MRI contrast agent: Contribution of microencapsulation to improved biodistribution. Magn Reson Imaging 7(6), 619627.
Renshaw, P.F., Owen, C.S., McLaughlin, A.C., Frey, T.G. & Leigh, J.S. (1986). Ferromagnetic contrast agents: A new approach. Magn Reson Med 3(2), 217225.
Rosi, N.L. & Mirkin, C.A. (2005). Nanostructures in biodiagnostics. Chem Rev 105(4), 15471562.
Schmahl, G., Rudolph, D., Niemann, B., Guttmann, P., Thieme, J. & Schneider, G. (1996). X-ray microscopy. Naturwissenschaften 83(2), 6170.
Schütz, G., Goering, E. & Stoll, H. (2007). Synchrotron radiation techniques based on X-ray magnetic circular dichroism. In Handbook of Magnetism and Advanced Magnetic Materials, Kronmüller, H. & Parkin, S. (Eds.), vol 3, pp. 13111390. Berlin: Wiley Verlag.
Schütz, G., Wagner, W., Wilhelm, W., Kienle, P., Zeller, R., Frahm, R. & Materlik, G. (1987). Absorption of circularly polarized X-rays in iron. Phys Rev Lett 58(7), 737740.
Stöhr, J. & Siegmann, H.C. (2006). Magnetism—From Fundamentals to Nanoscale Dynamics. Berlin: Springer.
Suh, W.H., Suslick, K.S., Stucky, G.D. & Suh, Y.H. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog Neurobiol 87(3), 133170.
Thole, B.T., Carra, P., Sette, F. & Vanderlaan, G. (1992). X-ray circular-dichroism as a probe of orbital magnetization. Phys Rev Lett 68(12), 19431946.
Tiefenauer, L.X., Tschirky, A., Kühne, G. & Andres, R.Y. (1996). In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14(4), 391402.
Unguris, J. (2001). Scanning electron microscopy with polarization analysis (SEMPA) and its applications. In Magnetic Imaging and Its Applications to Materials, De Graef, M. & Zhu, Y. (Eds.), vol. 36, Chap. 6. San Diego, CA: Academic Press.
Van Waeyenberge, B., Puzic, A., Stoll, H., Chou, K.W., Tyliszczak, T., Hertel, R., Fahnle, M., Bruckl, H., Rott, K., Reiss, G., Neudecker, I., Weiss, D., Back, C.H. & Schutz, G. (2006). Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444(7118), 461464.
Wang, K.L. (2002). Issues of nanoelectronics: A possible roadmap. J Nanosci Nanotechnol 2(3-4), 235266.
Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R. & Schlag, P.M. (2002). Hyperthermia in combined treatment of cancer. Lancet Oncology 3(8), 487497.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed