Skip to main content
×
Home
    • Aa
    • Aa

High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

  • Mark W. Tate (a1), Prafull Purohit (a1), Darol Chamberlain (a2), Kayla X. Nguyen (a3), Robert Hovden (a3), Celesta S. Chang (a4), Pratiti Deb (a4), Emrah Turgut (a3), John T. Heron (a4) (a5), Darrell G. Schlom (a5) (a6), Daniel C. Ralph (a1) (a4) (a6), Gregory D. Fuchs (a3) (a6), Katherine S. Shanks (a1), Hugh T. Philipp (a1), David A. Muller (a3) (a6) and Sol M. Gruner (a1) (a2) (a4) (a6)...
Abstract
Abstract

We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80–200 keV electron beams.

Copyright
Corresponding author
*Corresponding author. david.a.muller@cornell.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Battaglia , D. Contarato , P. Denes , D. Doering , P. Giubilato , T.S. Kim , S. Mattiazzo , V. Radmilovic & S. Zalusky (2009). A rad-hard CMOS active pixel sensor for electron microscopy. Nucl Instrum Methods Phys Res A 598(2), 642649.

W.S. Boyle & G.E. Smith (1970). Charge coupled semiconductor devices. Bell Syst Tech J 49(4), 587593.

T.A. Caswell , P. Ercius , M.W. Tate , A. Ercan , S.M. Gruner & D.A. Muller (2009). A high-speed area detector for novel imaging techniques in a scanning transmission electron microscope. Ultramicroscopy 109(4), 304311.

J.N. Chapman (1984). The investigation of magnetic domain-structures in thin foils by electron-microscopy. J Phys D Appl Phys 17(4), 623647.

J.N. Chapman , P.E. Batson , E.M. Waddell & R.P. Ferrier (1978). The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3(0), 203214.

J.M. Cowley (1993). Configured detectors for STEM imaging of thin specimens. Ultramicroscopy 49(1–4), 413.

G.Y. Fan , P. Datte , E. Beuville , J.F. Beche , J. Millaud , K.H. Downing , F.T. Burkard , M.H. Ellisman & N.H. Xuong (1998). ASIC-based event-driven 2D digital electron counter for TEM imaging. Ultramicroscopy 70(3), 107113.

G.Y. Fan & M.H. Ellisman (2000). Digital imaging in transmission electron microscopy. J Microsc 200, 113.

A.R. Faruqi , D.M. Cattermole , R. Henderson , B. Mikulec & C. Raeburn (2003). Evaluation of a hybrid pixel detector for electron microscopy. Ultramicroscopy 94(3–4), 263276.

A.R. Faruqi , R. Henderson & L. Tlustos (2005). Noiseless direct detection of electrons in Medipix2 for electron microscopy. Nucl Instrum Methods Phys Res A 546(1–2), 160163.

R. Gauvin , E. Lifshin , H. Demers , P. Horny & H. Campbell (2006). Win X-ray: A new Monte Carlo program that computes X-ray spectra obtained with a scanning electron microscope. Microsc Microanal 12(01), 4964.

L. Jin , A.C. Milazzo , S. Kleinfelder , S.D. Li , P. Leblanc , F. Duttweiler , J.C. Bouwer , S.T. Peltier , M.H. Ellisman & N.H. Xuong (2008). Applications of direct detection device in transmission electron microscopy. J Struct Biol 161(3), 352358.

K. Kimoto & K. Ishizuka (2011). Spatially resolved diffractometry with atomic-column resolution. Ultramicroscopy 111(8), 11111116.

J.M. LeBeau , S.D. Findlay , L.J. Allen & S. Stemmer (2010). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10(11), 44054408.

A. Lubk & J. Zweck (2015). Differential phase contrast: An integral perspective. Phys Rev A 91(2), 023805.

I. MacLaren , L.Q. Wang , D. McGrouther , A.J. Craven , S. McVitie , R. Schierholz , A. Kovacs , J. Barthel & R.E. Dunin-Borkowski (2015). On the origin of differential phase contrast at a locally charged and globally charge-compensated domain boundary in a polar-ordered material. Ultramicroscopy 154, 5763.

S. Majert & H. Kohl (2015). High-resolution STEM imaging with a quadrant detector conditions for differential phase contrast microscopy in the weak phase object approximation. Ultramicroscopy 148, 8186.

G. McMullan , S. Chen , R. Henderson & A.R. Faruqi (2009). Detective quantum efficiency of electron area detectors in electron microscopy. Ultramicroscopy 109(9), 11261143.

G. McMullan , A.R. Faruqi , D. Clare & R. Henderson (2014). Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156163.

R.R. Meyer & A. Kirkland (1998). The effects of electron and photon scattering on signal and noise transfer properties of scintillators in CCD cameras used for electron detection. Ultramicroscopy 75(1), 2333.

A.-C. Milazzo , P. Leblanc , F. Duttweiler , L. Jin , J.C. Bouwer , S. Peltier , M. Ellisman , F. Bieser , H.S. Matis , H. Wieman , P. Denes , S. Kleinfelder & N.-H. Xuong (2005). Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104(2), 152159.

K. Muller , F.F. Krause , A. Beche , M. Schowalter , V. Galioit , S. Loffler , J. Verbeeck , J. Zweck , P. Schattschneider & A. Rosenauer (2014). Atomic electric fields revealed by a quantum mechanical approach to electron picodiffraction. Nat Commun 5, 5653 (1–6).

V.B. Ozdol , C. Gammer , X.G. Jin , P. Ercius , C. Ophus , J. Ciston & A.M. Minor (2015). Strain mapping at nanometer resolution using advanced nano-beam electron diffraction. Appl Phys Lett 106(25), article no. 253107, pp. 1–4.

T.J. Pennycook , A.R. Lupini , H. Yang , M.F. Murfitt , L. Jones & P.D. Nellist (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part 1: Experimental demonstration at atomic resolution. Ultramicroscopy 151, 160167.

H. Rose (1976). Nonstandard imaging methods in electron microscopy. Ultramicroscopy 2, 251267.

Y. Takahashi & Y. Yajima (1994). Nonmagnetic contrast in scanning Lorentz electron microscopy of polycrystalline magnetic films. J Appl Phys 76(12), 76777681.

R.E. Thompson , D.R. Larson & W.W. Webb (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5), 27752783.

H. Yang , T.J. Pennycook & P.D. Nellist (2015). Efficient phase contrast imaging in STEM using a pixelated detector. Part II: Optimisation of imaging conditions. Ultramicroscopy 151, 232239.

J.M. Zuo (2000). Electron detection characteristics of a slow-scan CCD camera, imaging plates and film, and electron image restoration. Microsc Res Tech 49(3), 245268.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 46
Total number of PDF views: 335 *
Loading metrics...

Abstract views

Total abstract views: 896 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.