Skip to main content Accessibility help
×
Home

High Resolution FESEM and TEM Reveal Bacterial Spore Attachment

  • Barbara J. Panessa-Warren (a1), George T. Tortora (a2) (a3) and John B. Warren (a4)

Abstract

Transmission electron microscopy (TEM) studies in the 1960s and early 1970s using conventional thin section and freeze fracture methodologies revealed ultrastructural bacterial spore appendages. However, the limited technology at that time necessitated the time-consuming process of imaging serial sections and reconstructing each structure. Consequently, the distribution and function of these appendages and their possible role in colonization or pathogenesis remained unknown. By combining high resolution field emission electron microscopy with TEM images of identical bacterial spore preparations, we have been able to obtain images of intact and sectioned Bacillus and Clostridial spores to clearly visualize the appearance, distribution, resistance (to trypsin, chloramphenicol, and heat), and participation of these structures to facilitate attachment of the spores to glass, agar, and human cell substrates. Current user-friendly commercial field emission scanning electron microscopes (FESEMs), permit high resolution imaging, with high brightness guns at lower accelerating voltages for beam sensitive intact biological samples, providing surface images at TEM magnifications for making direct comparisons. For the first time, attachment structures used by pathogenic, environmental, and thermophile bacterial spores could be readily visualized on intact spores to reveal how specific appendages and outer spore coats participated in spore attachment, colonization, and invasion.

Copyright

Corresponding author

Corresponding author. E-mail: bpanessa@bnl.gov

References

Hide All

REFERENCES

Baird-Parker, A.C. (1969). Medical and veterinary significance of spore-forming bacteria and their spores. In The Bacterial Spore, Gould, G.W. & Hurst, A. (Eds.), pp. 517541. New York: Academic Press.
Becker, M.L., Fagan, J.A., Gallant, N.D., Bauer, B.J., Bajpai, V., Hobbie, E.K., Lacerda, S.H., Migler, K.B. & Jakupciak, J.P. (2007). Length dependent uptake of DNA-wrapped single walled carbon nanotubes. Adv Mater 19, 939945.
Bowen, W.R., Fenton, A.S., Lovitt, R.W. & Wright, C.J. (2001). The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods and a spinning disk technique. Biotechnol & Bioengin 79, 171179.
Bozzola, J. & Russell, L. (1992). Metal shadowing technique. In Electron Microscopy, Principles and Techniques for Biologists. p. 120. Boston, MA: Jones and Bartlett Publishers.
Davis, B.D. (1990). Bacterial architecture. In Microbiology, Davis, B., Dulbecco, R., Eisen, H. & Ginsberg, H. (Eds.), p. 47. Philadelphia, PA: J.B. Lippincott.
Driks, A. (1999). Bacillus subtilis spore coat. Microbiol Mol Biol Rev 63, 120.
Eveillard, M.V., Fourel, V., Barc, M., Kerneis, S., Colonnier, M., Karjalainen, T., Bourlioux, P. & Servin, A. (1993). Identification and characterization of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte-like Caco-2 and mucus-secreting HT29 cells in culture. Mol Microbiol 7, 371381.
Finlay, B. & Cossart, P. (1997). Exploitation of mammalian host cell functions by bacterial pathogens. Science 276, 718725.
Finlay, B. & Falkow, S. (1989). Common themes in microbial pathogenicity. Microbiol Rev 53, 210220.
Gerhardt, P. & Ribi, E. (1964). Ultrastructure of the exosporium enveloping spores of Bacillus cereus. J Bacteriol 88, 17741789.
Ginocchio, C.C. & Galan, J.E. (1995). Functional conservation among members of the Salmonella typhimurium InvA family of proteins. Infect Immun 63, 729732.
Gould, G.W. (1969). Germination. In The Bacterial Spore, Gould, G.W. & Hurst, A. (Eds.), pp. 397444. New York: Academic Press.
Gould, G.W. (1977). Recent advances in understanding of resistance and dormancy in bacterial spores. J Appl Bacteriol 42, 297309.
Guidi-Rontani, C. (2002). The alveolar macrophage: The Trojan horse of Bacillus anthracis. Trends Microbiol 10, 405409.
Guidi-Rontani, C., Pereira, Y., Ruffie, S., Sirard, J.C., Weber-Levy, M. & Mock, M. (1999). Identification and characterization of a germination operon on the virulence of plasmid pXO1 of Bacillus anthracis. Mol Microbiol 33, 407414.
Hachisuka, Y., Kojima, K. & Sato, T. (1966). Fine filaments on the outside of the exosporium of Bacillus anthracis spores. J Bacteriol 91, 23822384.
Helgason, E., Okstad, O., Caugant, D., Johansen, H., Fouet, A., Mock, M., Hegna, I. & Kolsto, A. (2000). Bacillus anthracis, Bacillus cereus and Bacillus thurengiensis—One species on the basis of genetic evidence. J Appl Environ Microbiol 66, 26272630.
Hoeniger, J. & Headley, C. (1969). Ultrastructural aspects of spore germination and outgrowth in C. sporogenes. Can J Microbiol 15, 10611066.
Keynan, A. & Evenchik, Z. (1969). Activation. In The Bacterial Spore, Gould, G.W. & Hurst, A. (Eds.), pp. 359396. New York: Academic Press.
Luft, J.H. (1971). Ruthenium red and violet. II. Fine structural localization in animal tissues. Anat Rec 171, 369416.
Olsen, I., Johnson, J., Moore, L. & Moore, W. (1995). Rejection of Clostridium putrificum and conservation of Clostridium botulinum and Clostridium sporogenes. Int J Syst Bacteriol 45, 414.
Panessa-Warren, B., Tortora, G. & Warren, J. (1994). Electron microscopy of C. sporogenes endospore attachment and germination. Scanning 16, 227240.
Panessa-Warren, B., Tortora, G. & Warren, J. (1997). Exosporial membrane plasticity of Clostridium sporogenes and Clostridium difficile. Tissue Cell 29, 449461.
Panessa-Warren, B., Tortora, G., Wong, S.S., Ghebrehiwet, B. & Warren, J. (2003). Bacillus and Clostridium spore attachment/entry of human colon cells. Microsc Microanal 9(Suppl. 2), 13781379.
Pope, L., Yolton, D. & Rode, L. (1967). Appendages of Clostridium bifermentans spores. J Bacteriol 94, 12061215.
Ross, J.M. (1957). The pathogenesis of anthrax following administration of spores by the respiratory route. J Path Bacteriol 73, 485494.
Roth, I.L. & Williams, R.P. (1963). Comparison of the fine structure of virulent and avirulent spores of Bacillus anthracis. Tex Rep Biol Med 21, 394399.
Russell, A. (1990). Bacterial spores and chemical sporocidal agents. Clin Micrbiol Rev 3, 99119.
Sadoff, H.L. (1970). Heat resistance of spore enzymes. J Appl Bacteriol 33, 130140.
Samsonoff, W., Hashimoto, T. & Conti, S. (1970). Ultrastructural changes associated with germination and outgrowth of an appendage bearing Clostridial spore. J Bacteriol 101, 10381045.
Schaeffer, A. & Fulton, D. (1933). A simplified method for staining spores. Science 77, 194195.
Shvedova, A., Kisin, E., Mercer, R., Murray, A., Johnson, V., Potapovich, A., Tyurina, Y., Gorelik, O., Arepalli, S., Schwegler-Berry, D., Hubbs, A., Antonini, J., Evans, D., Ku, B.-K., Ramsey, D., Maynard, A., Kagan, V., Castranova, V. & Baron, P. (2005). Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 289, 698708.
Strange, R.E. & Hunter, J.R. (1969). Outgrowth and the synthesis of macromolecules. In The Bacterial Spore, Gould, G.W. & Hurst, A. (Eds.), pp. 445483. New York: Academic Press.
Sylvestre, P., Couture-Tosi, E. & Mock, M. (2002). A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol Microbiol 45, 169178.
Tipper, D. & Gauthier, T. (1972). Structure of the bacterial spore. In Spores V, Halvorson, H., Hanson, R. & Campbell, L. (Eds.), pp. 312. Washington, DC: American Society for Microbiology.
Walker, P., Short, J., Roper, G. & Hodgkiss, W. (1976). The structure of clostridial spore. In Microbial Ultrastructure, Fuller, R. & Lovelock, D. (Eds.), pp. 117123. London: Academic Press.
Yolton, D., Pope, L., Williams, M. & Rode, L. (1968). Electron microscope characterization of Clostridium bifermentans. J Bacteriol 95, 231238.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed