Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T07:53:12.326Z Has data issue: false hasContentIssue false

High-Resolution Radial Distribution Function of Pure Ion-Implanted Amorphous Silicon Measured Using Tilted-Illumination Selected-Area Electron Diffraction

Published online by Cambridge University Press:  28 November 2013

Alexander Gorecki
Affiliation:
School of Physics, Monash University, Clayton, Victoria 3800, Australia
Amelia C.Y. Liu*
Affiliation:
School of Physics, Monash University, Clayton, Victoria 3800, Australia Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
Timothy C. Petersen
Affiliation:
School of Physics, Monash University, Clayton, Victoria 3800, Australia Monash Centre for Electron Microscopy, Monash University, Clayton, Victoria 3800, Australia
*
*Corresponding author. E-mail: amelia.liu@monash.edu
Get access

Abstract

High-resolution radial distribution functions of as-implanted and thermally relaxed amorphous silicon created by ion implantation were measured using tilted-illumination selected area electron diffraction at room temperature. The diffracted intensities were measured out to a maximum scattering vector 2 sin(θ)/λ of 3.3–3.7 Å−1. The volume-averaged pair-correlation statistics of as-implanted and relaxed ion-implanted amorphous silicon are virtually indistinguishable with coordination numbers of 3.7 ± 0.3 and 3.9 ± 0.3 (for neighbors closer than 3 Å) and average bond angles of 109 ± 0.5° and 110 ± 0.6°, respectively. The atomic rearrangements in ion-implanted amorphous silicon due to a low temperature anneal are subtle.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarez, F. & Valladares, A.A. (2002). Ab initio generation of amorphous semiconducting structures. The case of a-Si. J Non-Cryst Solids 299, 259264.Google Scholar
Borisenko, K.B., Haberl, B., Liu, A.C.Y., Chen, Y., Li, G., Williams, J.S., Bradby, J.E., Cockayne, D.J. & Treacy, M.M.J. (2012). Medium-range order in amorphous silicon investigated by constrained structural relaxation of two-body and four-body electron diffraction data. Acta Mater 60, 359375.Google Scholar
Cerva, H. & Hobbler, G. (1992). Comparison of transmission electron microscope cross sections of amorphous regions in ion implanted silicon with point-defect density calculations. J Electrochem Soc 139, 36313638.Google Scholar
Cockayne, D.J.H. (2007). The study of nanovolumes of amorphous materials using electron scattering. Ann Rev Mat Res 37, 159187.Google Scholar
Custer, J.S., Thompson, M.O., Jacobson, D.C., Poate, J.M., Roorda, S. & Sinke, W.C. (1994). Density of amorphous Si. Appl Phys Lett 64(4), 437439.Google Scholar
Donovan, E.P., Spaepen, F., Turnbull, D., Poate, J.M. & Jacobson, D.C. (1983). Heat of crystallization and melting point of amorphous silicon. Appl Phys Lett 42, 667670.CrossRefGoogle Scholar
Gibson, J.M. & Treacy, M.M.J. (1997). Diminished medium-range order observed in annealed amorphous germanium. Phys Rev Lett 78(6), 10741077.Google Scholar
Gupta, P.K. (1996). Non-crystalline solids: Glasses and amorphous solids. J Non-Cryst Solids 195, 158164.Google Scholar
Haberl, B. (2010). Structural characterization of amorphous silicon. PhD thesis. Canberra: The Australian National University. Google Scholar
Haberl, B., Liu, A.C.Y., Bradby, J.E., Ruffell, S., Williams, J.S. & Munroe, P. (2009). Structural characterization of pressure-induced amorphous silicon. Phys Rev B 79, 155209-1–8.Google Scholar
Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J.L., Wang, J. & Moss, S.C. (1999a). High-energy X-ray diffraction study of pure amorphous silicon. Phys Rev B 60(19), 1352013533.CrossRefGoogle Scholar
Laaziri, K., Kycia, S., Roorda, S., Chicoine, M., Robertson, J.L., Wang, J. & Moss, S.C. (1999b). High resolution radial distribution function of pure amorphous silicon. Phys Rev Lett 82(17), 34603463.Google Scholar
McBride, W. & Cockayne, D.J.H. (2003). The structure of nanovolumes of amorphous materials. J Non-Cryst Solids 318, 223238.Google Scholar
McGreevy, R.L. & Pusztai, L. (1988). Reverse Monte Carlo simulation: A new technique for the determination of disordered structures. Mol Sim 1, 359367.Google Scholar
Mitchell, D.R.G. (2008). DiffTools: Electron diffraction software tools for DigitalMicrograph (TM). Micros Res Tech 71, 588593.Google Scholar
Mitchell, D.R.G. & Petersen, T.C. (2012). RDFTools: A software tool for quantifying short-range ordering in amorphous materials. Microsc Res Tech 75, 153163.Google Scholar
Mosseri, R., Sella, C. & Dixmier, J. (1979). X-ray diffraction study of the effect of hydrogen atoms on the Si-Si atomic short-range order in amorphous silicon. Phys Stat Sol (a) 52, 475479.CrossRefGoogle Scholar
Olson, G.L. & Roth, J.A. (1994). Solid phase epitaxy. In Handbook of Crystal Growth 3, Hurle, D.T.J. (Ed.), pp. 255312. Amsterdam: North-Holland Elsevier Science Publishers.Google Scholar
Petersen, T.C., McBride, W., McCulloch, D., Snook, I.K. & Yarovsky, I. (2005). Refinements in the collection of energy filtered diffraction patterns from disordered materials. Ultramicroscopy 103, 175283.Google Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation, 5th ed. New York: Springer.Google Scholar
Roorda, S., Doorn, S., Sinke, W.C., Scholte, P.M.L.O. & van Loenen, E. (1989). Calometric evidence for structural relaxation in amorphous silicon. Phys Rev Lett 62(16), 18801883.Google Scholar
Roorda, S., Hakvoort, R.A., van Veen, A., Stolk, P.A. & Saris, F.W. (1992). Structural and electrical defects in amorphous silicon probed by positrons and electrons. J Appl Phys 72(11), 51455152.Google Scholar
Roorda, S. & Lewis, L.J. (2012). Comment on the local structure of amorphous silicon. Science 338, 1539. Google Scholar
Roorda, S., Poate, J.M., Jacobson, D.C., Dennis, B.S., Dierker, S. & Sinke, W. (1990). Raman study of de-relaxation and defects in amorphous silicon induced by MeV ion beams. Appl Phys Lett 56(21), 20972099.Google Scholar
Treacy, M.M.J. & Borisenko, K.B. (2012a). The local structure of amorphous silicon. Science 335, 950953.Google Scholar
Treacy, M.M.J. & Borisenko, K.B. (2012b). Response to comment on the local structure of amorphous silicon. Science 338, 1539. CrossRefGoogle Scholar
Treacy, M.M.J., Gibson, J.M. & Keblinski, P.J. (1998). Paracrystallites found in evaporated amorphous tetrahedral semiconductors. J Non-Cryst Solids 231, 99110.CrossRefGoogle Scholar
Vepřek, S., Iqbal, Z. & Sarott, F.-A. (1982). A thermodynamic criterion of the crystalline-to-amorphous transition in silicon. Phil Mag B 45, 137145.Google Scholar
Voyles, P.M., Gerbi, J.E., Treacy, M.M.J., Gibson, J.M. & Abelson, J.R. (2001). Absence of an abrupt phase change from polycrystalline to amorphous in silicon with deposition temperature. Phys Rev Lett 86, 55145518.Google Scholar
Williamson, D.L., Roorda, S., Chicoine, M., Tabti, R., Stolk, P.A., Acco, S. & Saris, F.W. (1995). On the nanostructure of pure amorphous silicon. Appl Phys Lett 67(2), 226228.Google Scholar