Skip to main content
×
Home
    • Aa
    • Aa

Identifying Hexagonal Boron Nitride Monolayers by Transmission Electron Microscopy

  • Michael L. Odlyzko (a1) and K. Andre Mkhoyan (a1)
Abstract
Abstract

Multislice simulations in the transmission electron microscope (TEM) were used to examine changes in annular-dark-field scanning TEM (ADF-STEM) images, conventional bright-field TEM (BF-CTEM) images, and selected-area electron diffraction (SAED) patterns as atomically thin hexagonal boron nitride (h-BN) samples are tilted up to 500 mrad off of the [0001] zone axis. For monolayer h-BN the contrast of ADF-STEM images and SAED patterns does not change with tilt in this range, while the contrast of BF-CTEM images does change; h-BN multilayer contrast varies strongly with tilt for ADF-STEM imaging, BF-CTEM imaging, and SAED. These results indicate that tilt series analysis in ADF-STEM image mode or SAED mode should permit identification of h-BN monolayers from raw TEM data as well as from quantitative post-processing.

Copyright
Corresponding author
Corresponding author. E-mail: mkhoyan@umn.edu
References
Hide All
N. Alem , R. Erni , C. Kisielowski , M. Rossell , W. Gannett & A. Zettl (2009). Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy. Phys Rev B 80, 155425.

U. Bangert , T. Eberlein , R.R. Nair , R. Jones , M. Gass , A.L. Bleloch , K.S. Novoselov , A. Geim & P.R. Briddon (2008). STEM plasmon spectroscopy of free standing graphene. Phys Stat Sol A 205, 22652269.

L.Y. Chang , F.R. Chen , A.I. Kirkland & J.J. Kai (2003). Calculations of spherical aberration-corrected imaging behaviour. J Electron Microsc 52, 359364.

J. Cowley & A. Moodie (1957). The scattering of electrons by atoms and crystals: A new theoretical approach. Acta Crystallogr 10, 609619.

C.R. Dean , A.F. Young , I. Meric , C. Lee , L. Wang , S. Sorgenfrei , K. Watanabe , T. Taniguchi , P. Kim , K.L. Shepard & J. Hone (2010). Boron nitride substrates for high-quality graphene electronics. Nat Nanotech 5, 722726.

M.H. Gass , U. Bangert , A.L. Bleloch , P. Wang , R.R. Nair & A.K. Geim (2008). Free-standing graphene at atomic resolution. Nat Nanotech 3, 676681.

A.K. Geim (2009). Graphene: Status and prospects. Science 324, 15301534.

A.K. Geim & K.S. Novoselov (2007). The rise of graphene. Nat Mater 6, 183191.

C.O. Girit , J.C. Meyer , R. Erni , M.D. Rossell , C. Kisielowski , L. Yang , C.-H. Park , M.F. Crommie , M.L. Cohen , S.G. Louie & A. Zettl (2009). Graphene at the edge: Stability and dynamics. Science 323, 17051708.

D. Golberg , Y. Bando , Y. Huang , T. Terao , M. Mitome , C. Tang & C. Zhi (2010). Boron nitride nanotubes and nanosheets. ACS Nano 4, 29792993.

P.Y. Huang , C.S. Ruiz-Vargas , A.M. van der Zande , W.S. Whitney , M.P. Levendorf , J.W. Kevek , S. Garg , J.S. Alden , C.J. Hustedt , Y. Zhu , J. Park , P.L. McEuen & D.A. Muller (2011). Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389392.

C. Jin , F. Lin , K. Suenaga & S. Iijima (2009). Fabrication of a freestanding boron nitride single layer and its defect assignments. Phys Rev Lett 102, 195505.

J.R. Jinschek , E. Yucelen , H.A. Calderon & B. Freitag (2011). Quantitative atomic 3-d imaging of single/double sheet graphene structure. Carbon 49, 556562.

B. Kelly (1970). Thermal vibration amplitudes of carbon atoms in the graphite lattice parallel to the basal planes. J Nucl Mater 34, 189192.

E.J. Kirkland (2010). Advanced Computing in Electron Microscopy, 2nd ed.New York: Springer.

J. Kotakoski , C. Jin , O. Lehtinen , K. Suenaga & A. Krasheninnikov (2010). Electron knock-on damage in hexagonal boron nitride monolayers. Phys Rev B 82, 113404.

L.F. Kourkoutis , M.K. Parker , V. Vaithyanathan , D.G. Schlom & D.A. Muller (2011). Direct measurement of electron channeling in a crystal using scanning transmission electron microsopy. Phys Rev B 84, 075485.

O.L. Krivanek , M.F. Chisholm , V. Nicolosi , T.J. Pennycook , G.J. Corbin , N. Dellby , M.F. Murfitt , C.S. Own , Z.S. Szilagyi , M.P. Oxley , S.T. Pantelides & S.J. Pennycook (2010). Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571574.

J.M. LeBeau , S.D. Findlay , L.J. Allen & S. Stemmer (2010). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110, 118125.

J.M. LeBeau , S.D. Findlay , X. Wang , A.J. Jacobson , L.J. Allen & S. Stemmer (2009). High-angle scattering of fast electrons from crystals containing heavy elements: Simulation and experiment. Phys Rev B 79, 214110.

R.F. Loane , P. Xu & J. Silcox (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr A 47, 267278.

J.C. Meyer , A.K. Geim , M.I. Katsnelson , K.S. Novoselov , T.J. Booth & S. Roth (2007a). The structure of suspended graphene sheets. Nature 446, 6063.

J. Meyer , A. Geim , M. Katsnelson , K. Novoselov , D. Obergfell , S. Roth , C. Girit & A. Zettl (2007b). On the roughness of single- and bi-layer graphene membranes. Solid State Comm 143, 101109.

J.C. Meyer , C. Kisielowski , R. Erni , M.D. Rossell , M.F. Crommie & A. Zettl (2008). Direct imaging of lattice atoms and topological defects in graphene membranes. Nano Lett 8, 35823586.

J.C. Meyer , S. Kurasch , H.J. Park , V. Skakalova , D. Knzel , A. Gro , A. Chuvilin , G. Algara-Siller , S. Roth , T. Iwasaki , U. Starke , J.H. Smet & U. Kaiser (2011). Experimental analysis of charge redistribution due to chemical bonding by high-resolution transmission electron microscopy. Nat Mater 10, 209215.

K.A. Mkhoyan , P.E. Batson , J. Cha , W.J. Schaff & J. Silcox (2006). Direct determination of local lattice polarity in crystals. Science 312, 1354.

K.A. Mkhoyan , S.E. Maccagnano-Zacher , E.J. Kirkland & J. Silcox (2008). Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108, 791803.

P.D. Nellist & S.J. Pennycook (2000). The principles and interpretation of annular dark-field Z-contrast imaging. Adv Imag Electron Phys 113, 147203.

K.S. Novoselov (2005). Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102, 1045110453.

S.J. Pennycook & L.A. Boatner (1988). Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336, 565567.

M. Pumera (2009). Electrochemistry of graphene: New horizons for sensing and energy storage. Chem Rec 9, 211223.

H. Sawada , T. Tomita , M. Naruse , T. Honda , P. Hambridge , P. Hartel , M. Haider , C. Hetherington , R. Doole , A. Kirkland , J. Hutchison , J. Titchmarsh & D. Cockayne (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J Electr Microsc 54, 119121.

K. Suenaga & M. Koshino (2010). Atom-by-atom spectroscopy at graphene edge. Nature 468, 10881090.

R. Zan , U. Bangert , Q. Ramasse & K. Novoselov (2011). Imaging of Bernal stacked and misoriented graphene and boron nitride: Experiment and simulation. J Microsc 244(2), 152158.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 40 *
Loading metrics...

Abstract views

Total abstract views: 165 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th October 2017. This data will be updated every 24 hours.