Skip to main content
×
Home

In Situ TEM Study of Catalytic Nanoparticle Reactions in Atmospheric Pressure Gas Environment

  • Huolin L. Xin (a1), Kaiyang Niu (a1), Daan Hein Alsem (a2) and Haimei Zheng (a1)
Abstract
Abstract

The understanding of solid–gas interactions has been greatly advanced over the past decade on account of the availability of high-resolution transmission electron microscopes (TEMs) equipped with differentially pumped environmental cells. The operational pressures in these differentially pumped environmental TEM (DP-ETEM) instruments are generally limited up to 20 mbar. Yet, many industrial catalytic reactions are operated at pressures equal or higher than 1 bar—50 times higher than that in the DP-ETEM. This poses limitations for in situ study of gas reactions through ETEM and advances are needed to extend in situ TEM study of gas reactions to the higher pressure range. Here, we present a first series of experiments using a gas flow membrane cell TEM holder that allows a pressure up to 4 bar. The built-in membrane heaters enable reactions at a temperature of 95–400°C with flowing reactive gases. We demonstrate that, using a conventional thermionic TEM, 2 Å atomic fringes can be resolved with the presence of 1 bar O2 gases in an environmental cell and we show real-time observation of the Kirkendall effect during oxidation of cobalt nanocatalysts.

Copyright
Corresponding author
* Corresponding author. hmzheng@lbl.gov
References
Hide All
Accutech Co. (n.d.). Gas/compressible flow calculation notes (FluidFlow3 Design Note 05). Available at http://www.accutech2000.com.au/FluidFlow3/Support/Modelling%20and%20Design%20Notes/Modelling%20and%20Design%20Note%2005%20%20Gas%20Flow.pdf
Allard L.F., Overbury S.H., Bigelow W.C., Katz M.B., Nackashi D.P. & Damiano J. (2012). Novel MEMS-based gas-cell/heating specimen holder provides advanced imaging capabilities for in situ reaction studies. Microsc Microanal 18, 656666.
Atkinson A. (1986). Diffusion in oxides of the first transition series metals. DTIC Document. Available at www.dtic.mil/dtic/tr/fulltext/u2/a196091.pdf.
Boyes E.D. & Gai P.L. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.
Carter C.B. & Williams D. (2009). Transmission Electron Microscopy. New York: Springer-Verlag.
Chen W.K., Peterson N.L. & Reeves W.T. (1969). Isotope effect for cation self-diffusion in CoO crystals. Phys Rev 186, 887891.
Chenna S., Banerjee R. & Crozier P.A. (2011). Atomic-scale observation of the Ni activation process for partial oxidation of methane using in situ environmental TEM. Chem Cat Chem 3, 10511059.
Chuang W.-H., Luger T., Fettig R.K. & Ghodssi R. (2004). Mechanical property characterization of LPCVD silicon nitride thin films at cryogenic temperatures. J Microelectromech Sys 13, 870879.
Crane Co. (Ed.). (2011). Flow of Fluids through Valves, Fittings and Pipe. Stamford, CT: Crane.
Creemer J.F., Helveg S., Hoveling G.H., Ullmann S., Molenbroek A.M., Sarro P.M. & Zandbergen H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.
de Jonge N., Bigelow W.C. & Veith G.M. (2010). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.
de Jonge N. & Ross F.M. (2011). Electron microscopy of specimens in liquid. Nat Nano 6, 695704.
Egerton R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. New York: Springer Science + Business Media.
Frances M.R. (2010). Controlling nanowire structures through real time growth studies. Rep Prog Phys 73, 114501.
Goldstein J., Newbury D.E., Joy D.C., Lyman C.E., Echlin P., Lifshin E., Sawyer L. & Michael J.R. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York: Springer.
Gusak A.M., Zaporozhets T.V., Tu K.N. & Gösele U. (2005). Kinetic analysis of the instability of hollow nanoparticles. Philos Mag 85, 44454464.
Haider M., Müller H., Uhlemann S., Zach J., Loebau U. & Hoeschen R. (2008). Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167178.
Hansen P.L., Wagner J.B., Helveg S., Rostrup-Nielsen J.R., Clausen B.S. & Topsøe H. (2002). Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 20532055.
Hansen T.W. & Wagner J.B. (2012). Environmental transmission electron microscopy in an aberration-corrected environment. Microsc Microanal 18, 684690.
Hatty V., Kahn H. & Heuer A.H. (2008). Fracture toughness, fracture strength, and stress corrosion cracking of silicon dioxide thin films. J Microelectromech Sys 17, 943947.
Jinschek J.R. & Helveg S. (2012). Image resolution and sensitivity in an environmental transmission electron microscope. Micron 43, 11561168.
Kisielowski C., Freitag B., Bischoff M., van Lin H., Lazar S., Knippels G., Tiemeijer P., van der Stam M., von Harrach S., Stekelenburg M., Haider M., Uhlemann S., Müller H., Hartel P., Kabius B., Miller D., Petrov I., Olson E.A., Donchev T., Kenik E.A., Lupini A.R., Bentley J., Pennycook S.J., Anderson I.M., Minor A.M., Schmid A.K., Duden T., Radmilovic V., Ramasse Q.M., Watanabe M., Erni R., Stach E.A., Denes P. & Dahmen U. (2008). Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14, 469477.
Railsback J.G., Johnston-Peck A.C., Wang J. & Tracy J.B. (2010). Size-dependent nanoscale Kirkendall effect during the oxidation of nickel nanoparticles. ACS Nano 4, 19131920.
Reed S. (1982). The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405409.
Rez P. (1983). A transport equation theory of beam spreading in the electron microscope. Ultramicroscopy 12, 2938.
Sharma R. (2001). Design and applications of environmental cell transmission electron microscope for in situ observations of gas–solid reactions. Microsc Microanal 7, 494506.
Sharma R. & Weiss K. (1998). Development of a TEM to study in situ structural and chemical changes at an atomic level during gas-solid interactions at elevated temperatures. Microsc Res Tech 42, 270280.
Smith J.M., Van Ness H.C. & Abbott M. (2004). Introduction to Chemical Engineering Thermodynamics. New York: McGraw-Hill.
Sun L., Noh K.W., Wen J.-G. & Dillon S.J. (2011). In situ transmission electron microscopy observation of silver oxidation in ionized/atomic gas. Langmuir 27, 1420114206.
Van Aert S., Chen J.H. & Van Dyck D. (2010). Linear versus non-linear structural information limit in high-resolution transmission electron microscopy. Ultramicroscopy 110, 14041410.
Vendelbo S.B., Kooyman P.J., Creemer J.F., Morana B., Mele L., Dona P., Nelissen B.J. & Helveg S. (2013). Method for local temperature measurement in a nanoreactor for in situ high-resolution electron microscopy. Ultramicroscopy 133, 7279.
Vlassak J. & Nix W. (1992). New bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films. J Mater Res 7, 32423249.
Yaguchi T., Suzuki M., Watabe A., Nagakubo Y., Ueda K. & Kamino T. (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.
Yin Y., Rioux R.M., Erdonmez C.K., Hughes S., Somorjai G.A. & Alivisatos A.P. (2004). Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304, 711714.
Yokosawa T., Alan T., Pandraud G., Dam B. & Zandbergen H. (2012). In-situ TEM on (de)hydrogenation of Pd at 0.5–4.5 bar hydrogen pressure and 20–400°C. Ultramicroscopy 112, 4752.
Yoshida H., Kuwauchi Y., Jinschek J.R., Sun K., Tanaka S., Kohyama M., Shimada S., Haruta M. & Takeda S. (2012). Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317319.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
VIDEO
Supplementary Materials

Xin Supplementary Material
Movie 1

 Video (27.3 MB)
27.3 MB
VIDEO
Supplementary Materials

Xin Supplementary Material
Movie 2

 Video (2.3 MB)
2.3 MB
VIDEO
Supplementary Materials

Xin Supplementary Material
Movie 4

 Video (1.5 MB)
1.5 MB
VIDEO
Supplementary Materials

Xin Supplementary Material
Movie 3

 Video (24.3 MB)
24.3 MB
PDF
Supplementary Materials

Xin Supplementary Material
Figures S1-S5

 PDF (874 KB)
874 KB

Metrics

Full text views

Total number of HTML views: 20
Total number of PDF views: 164 *
Loading metrics...

Abstract views

Total abstract views: 551 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 17th November 2017. This data will be updated every 24 hours.