Skip to main content Accessibility help

In Situ Transmission Electron Microscopy of Ionic Conductivity and Reaction Mechanisms in Ultrathin Solid Oxide Fuel Cells

  • Amir H. Tavabi (a1), Shigeo Arai (a2), Shunsuke Muto (a2), Takayoshi Tanji (a2) and Rafal E. Dunin-Borkowski (a1)...


Solid oxide fuel cells (SOFCs) are promising candidates for use in alternative energy technologies. A full understanding of the reaction mechanisms in these dynamic material systems is required to optimize device performance and overcome present limitations. Here, we show that in situ transmission electron microscopy (TEM) can be used to study redox reactions and ionic conductivity in SOFCs in a gas environment at elevated temperature. We examine model ultrathin half and complete cells in two environmental TEMs using off-axis electron holography and electron energy-loss spectroscopy. Our results from the model cells provide insight into the essential phenomena that are important for the operation of commercial devices. Changes in the activities of dopant cations in the solid electrolyte are detected during oxygen anion conduction, demonstrating the key role of dopants in electrolyte architecture in SOFCs.


Corresponding author

* Corresponding author.


Hide All
Adhikari, R., Das, A.K., Karmakar, D. & Ghatak, J. (2010). Gd-doped SnO2 nanoparticles: Structure and magnetism. J Magn Magn Mater 322, 36313637.
Arai, S., Muto, S., Murai, J., Sasaki, T., Ukyo, Y., Kuroda, K. & Saka, S. (2004). Valence change of cations in ceria-zirconia solid solution associated with redox reactions studied with electron energy-loss spectroscopy. Mater Trans 45, 29512955.
Crozier, P.A., Wang, R. & Sharma, R. (2008). In situ environmental TEM studies of dynamic changes in cerium-based oxide nanoparticles during redox processes. Ultramicroscopy 108, 14321440.
Dunin-Borkowski, R.E., Boothroyd, C.B. & Beleggia, M. (2010). Dynamical effects in the study of supported nanocrystals using electron holography. Microsc Microanal 16(Suppl 2), 572573.
Dunin-Borkowski, R.E., Newcomb, S.B., Kasama, T., McCartney, M.R., Weyland, M. & Midgley, P.A. (2005). Conventional and back-side focused ion beam milling for electron holography of electrostatic potentials in transistors. Ultramicroscopy 103, 6781.
Dusastre, V. & Kilner, J.A. (1999). Optimisation of composite cathodes for intermediate temperature SOFC applications. Solid State Ionics 126, 163174.
Gajdardziska-Josifovska, M., McCartney, M.R., de Ruijter, W.J., Smith, D.J., Weiss, J.K. & Zuo, J.M. (1993). Accurate measurements of mean inner potential of crystal wedges using digital electron holograms. Ultramicroscopy 50, 285299.
Garvie, L.A.J. & Buseck, P.R. (1999). Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids 66, 19431947.
Hertz, J.L., Rothschild, A. & Tuller, H.L. (2009). Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces. J Electroceram 193, 194198.
Horita, T., Kishimoto, H., Yamaji, K., Brito, M.E., Xiong, Y., Yokokawa, H., Hori, Y. & Miyachi, I. (2009). Effects of impurities on the degradation and long-term stability for solid oxide fuel cells. J Power Sources 193, 194198.
Hytch, M., Houdellier, F., Hüe, F. & Snoeck, E. (2008). Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 10861089.
Izuki, M., Brito, M.E., Yamaji, K., Kishimoto, H., Cho, D.H., Shimonosono, T., Horita, T. & Yokokawa, H. (2000). Interfacial stability and cation diffusion across the LSCF/GDC interface. Acta Mater 48, 47094714.
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van herle, J., Hessler-Wyser, A. & Dunin-Borkowski, R.E. (2010). In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater 58, 45784589.
Joo, J.H. & Choi, G.M. (2007). Electrical conductivity of thin film ceria grown by pulsed laser deposition. J Eur Ceram Soc 27, 42734277.
Kim, Y.B., Shim, J.Y., Gür, T.M. & Prinz, F.B. (2011). Epitaxial and polycrystalline gadolinia-doped ceria cathode interlayers for low temperature solid oxide fuel cells. J Electrochem Soc 158, B1453B1457.
Landheer, D., Gupta, J.A., Sproule, G.I., McCaffrey, J.P., Graham, M.J., Yang, K.C., Lu, Z.H. & Lennard, W.N. (2001). Characterization of Gd2O3 films deposited on Si(100) by electron-beam evaporation. J Electrochem Soc 148, G29G35.
Lichte, H. & Lehmann, M. (2008). Electron holography—Basics and applications. Rep Prog Phys 71, 016102.
Lichte, H., Linck, M., Geiger, D. & Lehmann, M. (2010). Aberration correction and electron holography. Microsc Microanal 16, 434440.
Liu, L.Y. & Jiao, C. (2005). Microstructure degradation of an anode/electrolyte interface in SOFC studied by transmission electron microscopy. Solid State Ionics 176, 435442.
Lubk, A., Wolf, D. & Lichte, H. (2010). The effect of dynamical scattering in off-axis holographic mean inner potential and inelastic mean free path measurements. Ultramicroscopy 110, 438446.
McCartney, M.R., Dunin-Borkowski, R.E. & Smith, D.J. (2005). Off-axis electron holography. In Handbook of Microscopy of Nanotechnology, Yao. N. & Wang, Z.L. (Eds.), pp. 629652. USA: Kluwer Academic Publishers.
Mench, M.M. (2008). Fuel Cell Engines. Hoboken, NJ: John Wiley and Sons Inc.
Midgley, P.A. & Dunin-Borkowski, R.E. (2009). Electron tomography and holography in materials science. Nat Mater 8, 271280.
Mitterdorfer, A. & Gauckler, L.J. (1999). Identification of the reaction mechanism of the Pt, O2(g)|yttria-stabilized zirconia system: Part I: General framework, modelling, and structural investigation. Solid State Ionics 117, 187202.
Moritomo, H., Oura, K., Tanji, T. & Enomoto, S. (2006). New specimen holder with 4 electrodes. Proc IMC16 1154.
O’Hayre, R., Cha, S.W., Colella, W. & Prinz, F.B. (2009). Fuel Cell Fundamentals, 2nd ed. New York, NY: John Wiley & Sons Inc.
Pantteix, P.J., Julien, I., Bernache-Assollant, D. & Abelard, P. (2006). Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC. Mater Chem Phys 95, 313330.
Rau, W.D., Schwander, P., Baumann, F.H., Höppner, W. & Ourmazd, A. (1999). Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys Rev Lett 82, 26142617.
Rez, D., Rez, P. & Grant, I. (1994). Dirac-Fock calculations of X-ray scattering factors and contributions to the mean inner potential for electron scattering. Acta Cryst A 50, 481497.
Rodrigo, K., Heiroth, S., Lundberg, M., Bonanos, N., Mohan Kant, K., Pryds, N., Theil Kuhn, L., Esposito, V., Linderoth, S., Schou, J. & Lippert, T. (2010). Electrical characterization of gadolinia-doped ceria films grown by pulsed laser deposition. Appl Phys A 101, 601607.
Rui, S., Roller, J., Yick, S., Zhang, X., Deces-Petit, C., Xie, Y., Maric, R. & Ghosh, D. (2007). A brief review of the ionic conductivity enhancement for selected oxide electrolytes. J Power Sources 172, 493502.
Sammes, N. (Ed.) (2006). Fuel Cell Technology—Researching Towards Commercialization, 1st ed. London: Springer.
Shao, Z. & Haile, S.M. (2004). A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170173.
Sharma, R. (2008). Observation of dynamic processes using environmental transmission or scanning transmission electron microscopy. In In-Situ Electron Microscopy at High Resolution, Banhart, F. (Ed.), pp. 1548. Singapore: World Scientific Publishing Co. Pte. Ltd.
Sickmann, J., Formanek, P., Linck, M., Muehle, M. & Lichte, H. (2011). Imaging modes for potential mapping in semiconductor devices by electron holography with improved lateral resolution. Ultramicroscopy 111, 290302.
Singhal, S.C. & Kendal, K. (2003). High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Oxford: Elsevier Ltd.
Soldati, A.L., Baque, L., Troiani, H., Cataro, C., Schreiber, A., Caneiro, A. & Serquis, A. (2011). High resolution FIB-TEM and FIB-SEM characterization of electrode/electrolyte interfaces in solid oxide fuel cells materials. Int J Hydrogen Energ 36, 91809188.
Steele, B.C.H. (1999). Fuel-cell technology: Running on natural gas. Nature 400, 619621.
Tanji, T., Ohno, T., Ishizuka, K. & Tonomura, A. (1994). Aberration-free image of an MgO crystal edge—An application of image restoration in electron holography. J Electron Micros 43, 318321.
Tavabi, A.H., Arai, S., Duchamp, M., Muto, S., Tanji, T. & Dunin-Borkowski, R.E. (2013). Electron beam induced reduction of cerium in pure, mixed and doped ceria. Microscopy Conference (MC) 2013, Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C) and Peter Grünberg Insitute (PGI-5), Forschungszentrum Jülich, 52425 Jülich, Germany, Regensburg, 25–30 August 2013, pp. 190–191.
Tavabi, A.H., Arai, S. & Tanji, T. (2012). In situ analytical electron microscopy studies of redox reactions at a YSZ/Pt interface. Microsc Microanal 18, 538544.
Tavabi, A.H., Yasenjiang, Z. & Tanji, T. (2011 a). In-situ off-axis electron holography of hetero-interface in oxygen atmosphere. J Electron Micros 60, 307314.
Tavabi, A.H., Yasenjiang, Z. & Tanji, T. (2011 b). Characterization of interface structures of single and poly crystalline yttria stabilized zirconia-Pt: An electron holography approach, International Union of Microbeam Analysis Societies (IUMAS), V Seoul, pp. 267–268.
Tonomura, A. (1999). Electron Holography, 2nd ed. Germany: Springer.
Tsoga, A., Gupta, A., Naumidis, A. & Nikolopoulos, P. (2011). Gadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technology. J Power Sources 196, 72327236.
Vayssilov, G.N., Lykhach, Y., Migani, A., Staudt, T., Petrova, G.P., Tsud, N., Skala, T., Bruix, A., Illas, F., Prince, K.C., Matolin, V., Neyman, K.M. & Libuda, J. (2011). Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater 10, 310315.
Yamamoto, K., Iriyama, Y., Asaka, T., Fujita, H., Fisher, C.A.J., Nonaka, K., Sugita, Y. & Ogumi, Z. (2010). Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew Chem Int Ed 49, 44144417.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Tavabi Supplementary Material
Figure S1

 Unknown (1.9 MB)
1.9 MB
Supplementary materials

Tavabi Supplementary Material
Figure S2

 Unknown (1.3 MB)
1.3 MB
Supplementary materials

Tavabi Supplementary Material
Figure S3

 Unknown (3.4 MB)
3.4 MB
Supplementary materials

Tavabi Supplementary Material
Figure S4

 Unknown (2.4 MB)
2.4 MB
Supplementary materials

Tavabi Supplementary Material
Figure S5

 Unknown (3.5 MB)
3.5 MB
Supplementary materials

Tavabi Supplementary Material
Figure S6

 Unknown (5.1 MB)
5.1 MB

In Situ Transmission Electron Microscopy of Ionic Conductivity and Reaction Mechanisms in Ultrathin Solid Oxide Fuel Cells

  • Amir H. Tavabi (a1), Shigeo Arai (a2), Shunsuke Muto (a2), Takayoshi Tanji (a2) and Rafal E. Dunin-Borkowski (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.