Skip to main content

The Influence of the Sample Thickness on the Lateral and Axial Resolution of Aberration-Corrected Scanning Transmission Electron Microscopy

  • Ranjan Ramachandra (a1), Hendrix Demers (a2) and Niels de Jonge (a1) (a3)

The lateral and axial resolution of three-dimensional (3D) focal series aberration-corrected scanning transmission electron microscopy was studied for samples of different thicknesses. The samples consisted of gold nanoparticles placed on the top and at the bottom of silicon nitride membranes of thickness between 50 and 500 nm. Atomic resolution was obtained for nanoparticles on top of 50-, 100-, and 200-nm-thick membranes with respect to the electron beam traveling downward. Atomic resolution was also achieved for nanoparticles placed below 50-, 100-, and 200-nm-thick membranes but with a lower contrast at the larger thicknesses. Beam broadening led to a reduced resolution for a 500-nm-thick membrane. The influence of the beam broadening on the axial resolution was also studied using Monte Carlo simulations with a 3D sample geometry.

Corresponding author
* Corresponding author. E-mail:
Hide All

Current affiliation: Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA, USA

Current affiliation: Department of Materials Engineering, McGill University, Montréal, Québec, Canada

Hide All
Aoyama K., Takagi T., Hirase A. & Miyazawa A. (2008). STEM tomography for thick biological specimens. Ultramicroscopy 109, 7080.
Behan G., Cosgriff E.C., Kirkland A.I. & Nellist P.D. (2009). Three-dimensional imaging by optical sectioning in the aberration-corrected scanning transmission electron microscope. Philos T Roy Soc A 367, 38253844.
Blom D.A., Allard L.E., Mishina S. & O'Keefe M.A. (2006). Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc Microanal 12, 483491.
Borisevich A.Y., Lupini A.R. & Pennycook S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci 103, 30443048.
Born M. & Wolf E. (1997). Principles of Optics. Cambridge, UK: Cambridge University Press.
D'Alfonso A.J., Cosgriff E.C., Findlay S.D., Behan G., Kirkland A.I., Nellist P.D. & Allen L.J. (2008). Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, part II: Inelastic scattering. Ultramicroscopy 108, 15671578.
de Jonge N., Bigelow W.C. & Veith G.M. (2010a). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.
de Jonge N., Poirier-Demers N., Demers H., Peckys D.B. & Drouin D. (2010b). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy 110, 11141119.
de Jonge N., Sougrat R., Northan B.M. & Pennycook S.J. (2010c). Three-dimensional scanning transmission electron microscopy of biological specimens. Microsc Microanal 16, 5463.
de Jonge N., Sougrat R., Peckys D.B., Lupini A.R. & Pennycook S.J. (2007). 3-dimensional aberration corrected scanning transmission electron microscopy for biology. In Nanotechnology in Biology and Medicine-Methods, Devices and Applications, Vo-Dinh T. (Ed.), pp. 13.1113.27. Boca Raton, FL: CRC Press.
Demers H., Poirier-Demers N., Couture A.R., Joly D., Guilmain M., de Jonge N. & Drouin D. (2011). Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software. Scanning 33, 135146.
Demers H., Poirier-Demers N., Drouin D. & de Jonge N. (2010). Simulating STEM imaging of nanoparticles in micrometers-thick substrates. Microsc Microanal 16, 795804.
Demers H., Ramachandra R., Drouin D. & de Jonge N. (2012). The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens. Microsc Microanal 18, 582590.
Dukes M.J., Ramachandra R., Baudoin J.P., Jerome W.G. & de Jonge N. (2011). Three-dimensional locations of gold-labeled proteins in a whole mount eukaryotic cell obtained with 3 nm precision using aberration-corrected scanning transmission electron microscopy. J Struct Biol 174, 552562.
Egerton R.F., Li P. & Malac M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.
Haider M., Uhlemann S. & Zach J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.
Hohmann-Marriott M.F., Sousa A.A., Azari A.A., Glushakova S., Zhang G., Zimmerberg J. & Leapman R.D. (2009). Nanoscale 3D cellular imaging by axial scanning transmission electron tomography. Nat Methods 6, 729731.
Hyun J.K., Ercius P. & Muller D.A. (2008). Beam spreading and spatial resolution in thick organic specimens. Ultramicroscopy 109, 17.
Krivanek O.L., Dellby N. & Lupini A.R. (1999). Towards sub-angstrom electron beams. Ultramicroscopy 78, 111.
Lupini A.R. & de Jonge N. (2011). The three-dimensional point spread function of aberration-corrected scanning transmission electron microscopy. Microsc Microanal 17, 817826.
Michael J.R. & Williams D.B. (1987). A consistent definition of probe size and spatial-resolution in the analytical electron-microscope. J Microsc-Oxford 147, 289303.
Nellist P.D., Chisholm M.F., Dellby N., Krivanek O.L., Murfitt M.F., Szilagyi Z.S., Lupini A.R., Borisevich A., Sides W.H. & Pennycook S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.
Newbury D.E. & Myklebust R.L. (1978). Monte-Carlo electron trajectory simulation of beam spreading in thin foil targets. Ultramicroscopy 3, 391395.
Pawley J.B. (1995). Handbook of Biological Confocal Microscopy. New York: Springer.
Ramachandra R. & de Jonge N. (2012). Optimized deconvolution for maximum axial resolution in three-dimensional aberration-corrected scanning transmission electron microscopy. Microsc Microanal 18, 218228.
Ramachandra R., Demers H. & de Jonge N. (2011). Atomic-resolution scanning transmission electron microscopy through 50 nm-thick silicon nitride membranes. Appl Phys Lett 98, 93109-1–3.
Reed S.J.B. (1982). The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy 7, 405410.
Reimer L. & Kohl H. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.
Rose A. (1948). Television pickup tubes and the problem of noise. Adv Electron 1, 131166.
Salvat F., Jablonski A. & Powell C.J. (2007). ELSEPA—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. Comput Phys Commun 165, 157190.
Takeguchi M., Hashimoto A., Shimojo M., Mitsuishi K. & Furuya K. (2008). Development of a stage-scanning system for high-resolution confocal STEM. J Electron Microsc 57, 123127.
Uhlemann S. & Haider M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.
van Benthem K., Lupini A.R., Kim M., Baik H.S., Doh S.J., Lee J.H., Oxley M.P., Findlay S.D., Allen L.J. & Pennycook S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, 034104-1–3.
Wang F., Zhang H.B., Cao M., Nishi R. & Takaoka A. (2010). Image quality of microns-thick specimens in the ultra-high voltage electron microscope. Micron 41, 490497.
Wen J., Mabon J., Lei C., Burdin S., Sammann E., Petrov I., Shah A.B., Chobpattana V., Zhang J., Ran K., Zuo J.M., Mishina S. & Aoki T. (2010). The formation and utility of sub-angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois. Microsc Microanal 16, 183193.
Xin H.L. & Muller D.A. (2009). Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc (Tokyo) 58, 157165.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 199 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd November 2017. This data will be updated every 24 hours.