Skip to main content Accessibility help

Liquid Phase Electron-Beam-Induced Deposition on Bulk Substrates Using Environmental Scanning Electron Microscopy

  • Matthew Bresin (a1), Aurelien Botman (a2), Steven J Randolph (a2), Marcus Straw (a2) and Jeffrey Todd Hastings (a1)...


The introduction of gases, such as water vapor, into an environmental scanning electron microscope is common practice to assist in the imaging of insulating or biological materials. However, this capability may also be exploited to introduce, or form, liquid phase precursors for electron-beam-induced deposition. In this work, the authors report the deposition of silver (Ag) and copper (Cu) structures using two different cell-less in situ deposition methods—the first involving the in situ hydration of solid precursors and the second involving the insertion of liquid droplets using a capillary style liquid injection system. Critically, the inclusion of surfactants is shown to drastically improve pattern replication without diminishing the purity of the metal deposits. Surfactants are estimated to reduce the droplet contact angle to below ~10°.


Corresponding author

* Corresponding author.


Hide All
Botman, A., Mulders, J.J.L. & Hagen, C.W. (2009). Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective. Nanotechnology 20(37), 372001.
Bresin, M., Chamberlain, A., Donev, E.U., Samantaray, C.B., Schardien, G.S. & Hastings, J.T. (2013 a). Electron-beam-induced deposition of bimetallic nanostructures from bulk liquids. Angew Chem Int Ed 52(31), 80048007.
Bresin, M., Nehru, N. & Hastings, J.T. (2013 b). Focused electron-beam induced deposition of plasmonic nanostructures from aqueous solutions. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics VI , von Freymann, G., Schoenfeld, W.V. & Rumpf, R.C. (Eds.), p. 861306. San Francisco, CA: SPIE—International Society for Optical Engineering.
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6(11), 695704.
Donev, E.U. & Hastings, J.T. (2009 a). Electron-beam-induced deposition of platinum from a liquid precursor. Nano Lett 9(7), 27152718.
Donev, E.U. & Hastings, J.T. (2009 b). Liquid-precursor electron-beam-induced deposition of Pt nanostructures: Dose, proximity, resolution. Nanotechnology 20(50), 505302.
Friedli, V., Utke, I., Mølhave, K. & Michler, J. (2009). Dose and energy dependence of mechanical properties of focused electron-beam-induced pillar deposits from Cu(C5HF6O2)2. Nanotechnology 20(38), 385304.
Hermansson, K., Lindberg, U., Hok, B. & Palmskog, G. (1991). Wetting properties of silicon surfaces. In Solid-State Sensors and Actuators Digest of Technical Papers, International Conference on TRANSDUCERS '91, pp. 193196. San Francisco, CA: IEEE.
Joy, D.C. & Joy, C.S. (2006). Scanning electron microscope imaging in liquids—Some data on electron interactions in water. J Microsc 221(2), 8488.
Mackus, A.J.M., Mulders, J.J.L., van de Sanden, M.C.M. & Kessels, W.M.M. (2010). Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition. J Appl Phys 107(11), 116102116103.
Ochiai, Y., Fujita, J.-I. & Matsui, S. (1996). Electron-beam-induced deposition of copper compound with low resistivity. J Vac Sci Technol B 14, 38873891.
Ocola, L.E., Joshi-Imre, A., Kessel, C., Chen, B., Park, J., Gosztola, D. & Divan, R. (2012). Growth characterization of electron-beam-induced silver deposition from liquid precursor. J Vac Sci Technol B 30(6), 06FF08.
Randolph, S.J., Botman, A. & Toth, M. (2013). Capsule-free fluid delivery and beam-induced electrodeposition in a scanning electron microscope. RSC Advances 3(43), 2001620023.
Roberts, N.A., Fowlkes, J.D., Magel, G.A. & Rack, P.D. (2013). Enhanced material purity and resolution via synchronized laser assisted electron beam induced deposition of platinum. Nanoscale 5(1), 408415.
Schardein, G., Donev, E.U. & Hastings, J.T. (2011). Electron-beam-induced deposition of gold from aqueous solutions. Nanotechnology 22(1), 015301.
Stelmashenko, N.A., Craven, J.P., Donald, A.M., Terentjev, E.M. & Thiel, B.L. (2001). Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy. J Microsc 204(2), 172183.
Utke, I., Hoffmann, P. & Melngailis, J. (2008). Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26(4), 11971276.
Williams, R. & Goodman, A.M. (1974). Wetting of thin layers of SiO[sub 2] by water. Appl Phys Lett 25(10), 531532.


Liquid Phase Electron-Beam-Induced Deposition on Bulk Substrates Using Environmental Scanning Electron Microscopy

  • Matthew Bresin (a1), Aurelien Botman (a2), Steven J Randolph (a2), Marcus Straw (a2) and Jeffrey Todd Hastings (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed