Skip to main content
×
Home
    • Aa
    • Aa

Low-Dosage Maximum-A-Posteriori Focusing and Stigmation

  • Jonas Binding (a1), Shawn Mikula (a1) and Winfried Denk (a1)
Abstract
Abstract

Radiation damage is often an issue during high-resolution imaging, making low-dose focusing and stigmation essential, in particular when no part of the sample can be “sacrificed” for this. An example is serial block-face electron microscopy, where the imaging resolution must be kept optimal during automated acquisition that can last months. Here, we present an algorithm, which we call “Maximum-A-Posteriori Focusing and Stigmation (MAPFoSt),” that was designed to make optimal use of the available signal. We show that MAPFoSt outperforms the built-in focusing algorithm of a commercial scanning electron microscope even at a tenfold reduced total dose. MAPFoSt estimates multiple aberration modes (focus and the two astigmatism coefficients) using just two test images taken at different focus settings. Using an incident electron dose density of 2,500 electrons/pixel and a signal-to-noise ratio of about one, all three coefficients could be estimated to within <7% of the depth of focus, using 19 detected secondary electrons per pixel. A generalization to higher-order aberrations and to other forms of imaging in both two and three dimensions appears possible.

Copyright
Corresponding author
* Corresponding author. E-mail: Winfried.Denk@mpimf-heidelberg.mpg.de
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

N. Baba , K. Terayama , T. Yoshimizu , N. Ichise & N. Tanaka (2001). An auto-tuning method for focusing and astigmatism correction in HAADF-STEM, based on the image contrast transfer function. J Electron Microsc (Tokyo) 50(3), 163176.

A. Blanc , T. Fusco , M. Hartung , L. Mugnier & G. Rousset (2003). Calibration of NAOS and CONICA static aberrations. Astron Astrophys 399(1), 373383.

K.L. Briggman , M. Helmstaedter & W. Denk (2011). Wiring specificity in the direction-selectivity circuit of the retina. Nature 471(7337), 183188.

B.H. Dean & C.W. Bowers (2003). Diversity selection for phase-diverse phase retrieval. J Opt Soc Am A 20(8), 14901504.

D. Débarre , M.J. Booth & T. Wilson (2007). Image based adaptive optics through optimisation of low spatial frequencies. Opt Express 15(13), 81768190.

D. Débarre , E.J. Botcherby , M.J. Booth & T. Wilson (2008). Adaptive optics for structured illumination microscopy. Opt Express 16(13), 92909305.

D. Débarre , E.J. Botcherby , T. Watanabe , S. Srinivas , M.J. Booth & T. Wilson (2009). Image-based adaptive optics for two-photon microscopy. Opt Lett 34(16), 24952497.

W. Denk & H. Horstmann (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. Plos Biol 2(11), 19001909.

J.J. Dolne , R.J. Tansey , K.A. Black , J.H. Deville , P.R. Cunningham , K.C. Widen & P.S. Idell (2003). Practical issues in wave-front sensing by use of phase diversity. Appl Opt 42(26), 52845289.

R.A. Gonsalves (1982). Phase retrieval and diversity in adaptive optics. Opt Eng 21, 829832.

M. Guizar-Sicairos , S.T. Thurman & J.R. Fienup (2008). Efficient subpixel image registration algorithms. Opt Lett 33(2), 156158.

B.M. Hanser , M.G.L. Gustafsson , D.A. Agard & J.W. Sedat (2003). Phase retrieval for high-numerical-aperture optical systems. Opt Lett 28(10), 801803.

D.J. Lee , M.C. Roggemann & B.M. Welsh (1999). Cramér-Rao analysis of phase-diverse wave-front sensing. J Opt Soc Am A 16(5), 10051015.

L. Meynadier , V. Michau , M.-T. Velluet , J.-M. Conan , L.M. Mugnier & G. Rousset (1999). Noise propagation in wave-front sensing with phase diversity. Appl Opt 38(23), 49674979.

S. Mikula , J. Binding & W. Denk (2012). Staining and embedding the whole mouse brain for electron microscopy. Nature Methods 9, 11981201.

M.A. Neil , M.J. Booth & T. Wilson (2000). New modal wave-front sensor: A theoretical analysis. J Opt Soc Am A Opt Image Sci Vis 17(6), 10981107.

F.C. Nicolls , G. de Jager & B.T. Sewell (1997). Use of a general imaging model to achieve predictive autofocus in the scanning electron microscope. Ultramicroscopy 69(1), 2537.

M. Ogasawara , Y. Fukudome , K. Hattori , S. Tamamushi , S. Koikari & K. Onoguchi (1998). Automatic focusing and astigmatism correction method based on Fourier transform of scanning electron microscope images. Jpn J Appl Phys 38, 957.

K.H. Ong , J.C.H. Phang & J.T.L. Thong (1998). A robust focusing and astigmatism correction method for the scanning electron microscope—Part III: An improved technique. Scanning 20(5), 357368.

R.G. Paxman , T.J. Schulz & J.R. Fienup (1992). Joint estimation of object and aberrations by using phase diversity. J Opt Soc Am A 9(7), 10721085.

M. Rudnaya , H. ter Morsche , J. Maubach & R. Mattheij (2011). A derivative-based fast autofocus method in electron microscopy. J Math Imaging Vision 44(1), 3851.

J.-F. Sauvage , T. Fusco , G. Rousset & C. Petit (2007). Calibration and precompensation of noncommon path aberrations for extreme adaptive optics. J Opt Soc Am A 24(8), 23342346.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary Materials

Binding Supplementary Material
Figures S1-S3

 PDF (321 KB)
321 KB

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 35 *
Loading metrics...

Abstract views

Total abstract views: 230 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th September 2017. This data will be updated every 24 hours.