Skip to main content Accessibility help
×
Home

Low-Voltage Electron-Probe Microanalysis of Fe–Si Compounds Using Soft X-Rays

  • Phillip Gopon (a1), John Fournelle (a1), Peter E. Sobol (a1) and Xavier Llovet (a2)

Abstract

Conventional electron-probe microanalysis has an X-ray analytical spatial resolution on the order of 1–4 μm width/depth. Many of the naturally occurring Fe–Si compounds analyzed in this study are smaller than 1 μm in size, requiring the use of lower accelerating potentials and nonstandard X-ray lines for analysis. Problems with the use of low-energy X-ray lines (soft X-rays) of iron for quantitative analyses are discussed and a review is given of the alternative X-ray lines that may be used for iron at or below 5 keV (i.e., accelerating voltage that allows analysis of areas of interest <1 μm). Problems include increased sensitivity to surface effects for soft X-rays, peak shifts (induced by chemical bonding, differential self-absorption, and/or buildup of carbon contamination), uncertainties in the mass attenuation coefficient for X-ray lines near absorption edges, and issues with spectral resolution and count rates from the available Bragg diffractors. In addition to the results from the traditionally used Fe Lα line, alternative approaches, utilizing Fe Lβ, and Fe Ll-η lines, are discussed.

Copyright

Corresponding author

* Corresponding author. E-mail: pgopon@geology.wisc.edu

References

Hide All
Anand, M., Taylor, L.A., Nazarov, M.A., Shu, J., Mao, H.K. & Hemley, R.J. (2004). Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proc Natl Acad Sci USA 101, 68476851.
Anderson, C.A. (1967). The quality of X-ray microanalysis in the ultra-soft X-ray region. Br J Appl Phys 18, 10331043.
Armstrong, J. (2011). Low voltage and low overvoltage X-ray nanoanalysis with field emission electron microprobes and SEMs: Problems in quantitation for first-row transition elements. 2011 AGU Fall Meeting, San Francisco, CA.
Castaing, R. (1951). Application of electron probes to local chemical and crystallographic analysis. Thesis, University of Paris, Publication O.N.E.R.A, No. 55.
Chantler, C.T., Olsen, K., Dragoset, R.A., Chang, J., Kishore, A.R., Kotochigova, S.A., Zucker, D.S. (2005). X-ray form factor, attenuation, and scattering tables. Available at www.nist.gov/pml/data/ffast/index.cfm.
Chopra, D. (1970). Ni L self-absorption spectrum. Phys Rev A 1, 230235.
Deslattes, R.D. (1969). Estimates of X-ray attenuation coefficients for the elements and their compounds. Acta Cryst A25, 8993.
Deslattes, R.D., Kessler, E.G., Indelicato, P., DeBilly, L., Lindroth, E. & Anton, J. (2003). X-ray transition energies: New approach to a comprehensive evaluation. Rev Mod Phys 75, 3599.
Donovan, J.J., Kremser, D., Fournelle, J. & Goemann, K. (2012). Probe for EPMA: Users Guide and Reference. Available at ProbeSoftware.com.
Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V. & Gauvin, R. (2007). CASINO V2.42: A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning 29, 92101.
Eisebitt, S. & Rubensson, J. (1994). Electronic structure of buried a-FeSi2 and B-FeSi2 layers. Phys Rev B 50, 330340.
Essene, E.J. & Fisher, D.C. (1986). Lightning strike fusion: Extreme reduction and metal-silicate liquid immiscibility. Science 234, 189193.
Fialin, M., Wagner, C., Metrich, N., Humler, E., Galoisy, L. & Bezos, A. (2001). Fe 3 + / ΣFe vs. FeLα peak energy for minerals and glasses: Recent advances with the electron microprobe. Amer Mineral 86, 456465.
Fialin, M., Wagner, C. & Remond, G. (1998). X-ray emission valence band spectrometry: Application to Cu and Fe L-series. EMAS 98, 129140.
Fischer, D.W. & Baun, W.L. (1967). Self-absorption effects in the soft X-Ray Mα and Mβ emission spectra of the rare earth elements. J Appl Phys 38, 48304836.
Gopon, P., Fournelle, J. & Llovet, X. (2012). Soft X-ray EPMA of submicron phase lunar Fe–Si compounds. Microsc Microanal 18(Suppl 2), 17281729.
Gopon, P., Sobol, P.E. & Fournelle, J. (2013). Random spectrometer motion for removal of time dependent artifacts in spectroscopy. Microsc Microanal 19(Suppl 2), 814815.
Heinrich, K.F.J. (1966). X-ray absorption uncertainty. In The Electron Microprobe, McKinley, T.D., Heinrich, K.F.J. & Wittry, D.B. (Eds.), pp. 296377. New York: John Wiley & Sons.
Heinrich, K.F.J. (1987). Mass attenuation coefficients for electron microprobe microanalysis. In Proc. 11th International Congress on X-Ray Optics and Microsanalysis, London, Ontario, Canada, 1986 , pp. 67119.
Henke, B.L., Lee, P., Tanaka, T.J., Shimabukro, R.L. & Fijikawa, B.K. (1982). Low-energy X-ray interaction coefficients: Photoabsorption, scattering, and reflection: E = 100–2000 eV Z = 1–94. Atomic Data Nucl Data Tables 27, 1144.
Henke, B.L., White, R. & Lundberg, B. (1957). Semi-empirical determination of mass absorption coefficients for the 5 to 50 angstrom X-ray region. J Appl Phys 28, 98105.
Höfer, H.E. & Brey, G.P. (2007). The iron oxidation state of garnet by electron microprobe: Its determination with the flank method combined with major-element analysis. Am Mineral 92, 873885.
Kerur, B.R., Thontdarya, S.R. & Hanumaiah, B. (1993). X-ray attenuation coefficients at 6.46 keV and the validity of the mixture rule for compounds. X-Ray Spectrom 22, 1316.
Llovet, X., Heikinheimo, E., Núñez, A., Merlet, C., Almagro, J., Richter, S., Fournelle, J. & van Hoek, C. (2012). An inter-laboratory comparison of EPMA analysis of alloy steel at low voltage. In IOP Conf Ser: Mater Sci Eng 32, 114.
Mackenzie, A.P. (1993). Recent progress in electron-probe microanalysis. Rep Prog Phys 56, 557604.
Ohnuma, I., Abe, S., Shimenouchi, S., Omori, T. & Kainuma, R. (2012). Experimental and thermodynamic studies of the Fe-Si binary system. ISIJ Inte 52, 540548.
Okamoto, H. (1990). Fe–Si (iron–silicon). In Binary Alloy Phase Diagrams, 2nd ed., Massalski, T.B. (Ed.), pp. 17711772. Materials Park, OH: ASM International.
O'Nions, R.K. & Smith, D.G.W. (1971). Investigation the LII, III emission spectra of Fe by electron microprobe: Part 2. The Fe LII, III spectra of Fe and Fe–Ti oxides. Am Mineral 56, 14521455.
Pouchou, J.L. (1996). Use of soft X-rays in microanalysis. Mikrochim Acta (Suppl) 12, 3960.
Pouchou, J.L. & Pichoir, F. (1984). A new model for quantitative X-ray microanalysis. I.—application to the analysis of homogeneous samples. Rech Aerosp 3, 167192.
Pouchou, J.L., Pichoir, F. & Boivin, D. (1990). XPP procedure applied to quantitative EDS X-ray analysis in the SEM. In Microbeam Analysis, Michael, J.R. & Ingram, P. (Eds.), pp. 120126. San Francisco, CA: San Francisco Press.
Rietmeijer, F., Nakamura, T., Tsuchiyama, A., Uesugi, K., Nakano, T. & Leroux, H. (2008). Origin and formation of iron silicide phases in the aerogel of the Stardust mission. Meteoritics and Planet Sci 1/2, 121134.
Ritchie, N.W.M. (2009). Spectrum simulation in DTSA-II. Microsc Microanal 15, 454468.
Sokaras, D., Kochur, A., Müller, M., Kolbe, M., Beckhoff, B., Mantler, M., Zarkadas, C., Andrianis, M., Lagoyannis, A. & Karydas, A. (2011). Cascade L-shell soft-X-ray emission as incident X-ray photons are tuned across the 1s ionization threshold. Phys Rev A 83, 112.
Spicuzza, M.J., Valley, J.V., Fournelle, J., Huberty, J.M. & Treiman, A. (2011). Native silicon and Fe-silicides from the Apollo 16 lunar regolith: Extreme reduction, metal-silicate immiscibility, and shock melting. 42nd Lunar and Planet Sci Conf (2011) 97, 1617.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed