Skip to main content Accessibility help

Mapping Dynamical Mechanical Properties of Osteonal Bone by Scanning Acoustic Microscopy in Time-of-Flight Mode

  • Stéphane Blouin (a1), Stephan Puchegger (a2), Andreas Roschger (a1), Andrea Berzlanovich (a3), Peter Fratzl (a4), Klaus Klaushofer (a1) and Paul Roschger (a1)...


An important determinant of mechanical properties of bone is Young’s modulus and its variation in individual osteons of cortical bone tissue. Its mechanical behavior also depends on deformation rate owing to its visco- or poroelastic properties. We developed a method to measure dynamical mechanical properties of bulk bone tissue at osteonal level based on scanning acoustic microscopy (SAM) using time-of-flight (TOF) measurements in combination with quantitative backscattered electron imaging (qBEI). SAM-TOF yields local sound velocities and qBEI corresponding material densities together providing elastic properties. Osteons (n=55) were measured in three human femoral diaphyseal ground bone sections (∼30 µm in thickness). In addition, subchondral bone and mineralized articular cartilage were investigated. The mean mineral contents, the mean sound velocities, and the mean elastic modulus of the osteons ranged from 20 to 26 wt%, from 3,819 to 5,260 m/s, and from 21 to 44 GPa, respectively. There was a strong positive correlation between material density and sound velocity (Pearson’s r=0.701; p<0.0001) of the osteons. Sound velocities between cartilage and bone was similar, though material density was higher in cartilage (+4.46%, p<0.0001). These results demonstrate the power of SAM-TOF to estimate dynamic mechanical properties of the bone materials at the osteonal level.


Corresponding author

* Corresponding author.


Hide All
Adharapurapu, R.R., Jiang, F. & Vecchio, K.S. (2006). Dynamic fracture of bovine bone. Mater Sci Eng C 26(8), 13251332.
Al Nazer, R., Lanovaz, J., Kawalilak, C., Johnston, J.D. & Kontulainen, S. (2012). Direct in vivo strain measurements in human bone-a systematic literature review. J. Biomech. 45(1), 2740.
Ashman, R.B. & Rho, J.Y. (1988). Elastic modulus of trabecular bone material. J. Biomech. 21(3), 177181.
Atalar, A., Quate, C.F. & Wickramasinghe, H.K. (1977). Phase imaging in reflection with the acoustic microscope. Appl Phys Lett 31(12), 791793.
Basser, P.J., Schneiderman, R., Bank, R.A., Wachtel, E. & Maroudas, A. (1998). Mechanical properties of the collagen network in human articular cartilage as measured by osmotic stress technique. Arch. Biochem. Biophys. 351(2), 207219.
Bensamoun, S., Gherbezza, J.M., de Belleval, J.F. & Ho Ba Tho, M.C. (2004aTransmission scanning acoustic imaging of human cortical bone and relation with the microstructure. Clin. Biomech. (Bristol, Avon) 19(6), 639647.
Bensamoun, S., Ho Ba Tho, M.C., Luu, S., Gherbezza, J.M. & de Belleval, J.F. (2004bSpatial distribution of acoustic and elastic properties of human femoral cortical bone. J. Biomech. 37(4), 503510.
Bertoni, H.L. (1984). Ray-Optical Evaluation of V(z) in the Reflection Acoustic Microscope. IEEE Trans Sonics Ultrason 31(2), 105116.
Bloebaum, R.D., Skedros, J.G., Vajda, E.G., Bachus, K.N. & Constantz, B.R. (1997). Determining mineral content variations in bone using backscattered electron imaging. Bone 20(5), 485490.
Boyde, A. & Jones, S.J. (1983). Back-scattered electron imaging of skeletal tissues. Metab. Bone Dis. Relat. Res 5(3), 145150.
Briggs, A. (1992). Acoustic microscopy. Oxford: Oxford University Press.
Bumrerraj, S. & Katz, J.L. (2001). Scanning acoustic microscopy study of human cortical and trabecular bone. Ann. Biomed. Eng. 29(12), 10341042.
Chappard, D., Basle, M.F., Legrand, E. & Audran, M. (2011). New laboratory tools in the assessment of bone quality. Osteoporos. Int. 22(8), 22252240.
Cowin, S.C. (1999). Bone poroelasticity. J. Biomech. 32(3), 217238.
Crowninshield, R.D. & Pope, M.H. (1974). The response of compact bone in tension at various strain rates. Ann. Biomed. Eng. 2(2), 217225.
Currey, J.D. (1975). The effects of strain rate, reconstruction and mineral content on some mechanical properties of bovine bone. J. Biomech. 8(1), 8186.
Currey, J.D. (2003). How well are bones designed to resist fracture? J. Bone Miner. Res 18(4), 591598.
Eckardt, I. & Hein, H.J. (2001). Quantitative measurements of the mechanical properties of human bone tissues by scanning acoustic microscopy. Ann. Biomed. Eng. 29(12), 10431047.
Evans, J.A. & Tavakoli, M.B. (1990). Ultrasonic attenuation and velocity in bone. Phys. Med. Biol. 35(10), 13871396.
Ferguson, V.L., Bushby, A.J. & Boyde, A. (2003). Nanomechanical properties and mineral concentration in articular calcified cartilage and subchondral bone. J. Anat. 203(2), 191202.
Fratzl, P., Gupta, H.S., Paschalis, E.P. & Roschger, P. (2004). Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 21152123.
Fratzl, P. & Weinkamer, R. (2007). Nature’s hierarchical materials. Prog Mater Sci 52(8), 12631334.
Fry, F.J. & Barger, J.E. (1978). Acoustical properties of the human skull. J. Acoust. Soc. Am. 63(5), 15761590.
Granke, M., Gourrier, A., Rupin, F., Raum, K., Peyrin, F., Burghammer, M., Saied, A. & Laugier, P. (2013). Microfibril orientation dominates the microelastic properties of human bone tissue at the lamellar length scale. PLoS One 8(3), e58043.
Gupta, H.S., Schratter, S., Tesch, W., Roschger, P., Berzlanovich, A., Schoeberl, T., Klaushofer, K. & Fratzl, P. (2005). Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. J. Struct. Biol. 149(2), 138148.
Gupta, H.S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H.D. & Fratzl, P. (2006). Mechanical modulation at the lamellar level in osteonal bone. J Mater Res 21(08), 19131921.
Hänel, V. & Kleffner, B. (2000). Double focus technique for simultneous measurement of sound velocity and thickness of thin samples using time-resolved acoustic microscopy. Acoustical Imaging 24, 187192.
Hansen, U., Zioupos, P., Simpson, R., Currey, J.D. & Hynd, D. (2008). The effect of strain rate on the mechanical properties of human cortical bone. J. Biomech. Eng. 130(1), 011011.
Hasegawa, K., Turner, C.H. & Burr, D.B. (1994). Contribution of collagen and mineral to the elastic anisotropy of bone. Calcif. Tissue Int. 55(5), 381386.
Hasegawa, K., Turner, C.H., Recker, R.R., Wu, E. & Burr, D.B. (1995). Elastic properties of osteoporotic bone measured by scanning acoustic microscopy. Bone 16(1), 8590.
Hengsberger, S., Boivin, G. & Zysset, P.K. (2002). Morphological and mechanical properties of bone structural units: a two-case study. JSME 45(4), 936943.
Hoc, T., Henry, L., Verdier, M., Aubry, D., Sedel, L. & Meunier, A. (2006). Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone 38(4), 466474.
Katz, J.L. & Meunier, A. (1993). Scanning acoustic microscope studies of the elastic properties of osteons and osteon lamellae. J. Biomech. Eng 115(4B), 543548.
Katz, J.L. & Meunier, A. (1997). Scanning Acoustic Microscopy of human and canine cortical bone microstructure at high frequencies. Stud. Health Technol. Inform. 40, 123137.
Kotha, S.P., DePaula, C.A., Mann, A.B. & Guzelsu, N. (2008). High frequency ultrasound prediction of mechanical properties of cortical bone with varying amount of mineral content. Ultrasound Med. Biol. 34(4), 630637.
Kujawska, T., Wojcik, J. & Filipczynski, L. (2004). Possible temperature effects computed for acoustic microscopy used for living cells. Ultrasound Med. Biol. 30(1), 93101.
Lang, S.B. (1970). Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bones. IEEE Trans. Biomed. Eng. 17(2), 101105.
Lees, S., Ahern, J.M. & Leonard, M. (1983). Parameters influencing the sonic velocity in compact calcified tissues of various species. J. Acoust. Soc. Am. 74(1), 2833.
Lees, S., Heeley, J.D. & Cleary, P.F. (1979). A study of some properties of a sample of bovine cortical bone using ultrasound. Calcif. Tissue Int. 29(2), 107117.
Lees, S. & Klopholz, D.Z. (1992). Sonic velocity and attenuation in wet compact cow femur for the frequency range 5 to 100 MHz. Ultrasound Med. Biol. 18(3), 303308.
Litniewski, J. (2005). Determination of the elasticity coefficient for a single trabecula of a cancellous bone: scanning acoustic microscopy approach. Ultrasound Med. Biol. 31(10), 13611366.
Madry, H., van Dijk, C.N. & Mueller-Gerbl, M. (2010). The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc 18(4), 419433.
Mavko, G., Mukerji, T. & Dvorkin, J. (2009). The rock physics handbook: tools for seismic analysis of porous media. Cambridge, UK; New York: Cambridge University Press.
McElhaney, J.H. (1966). Dynamic response of bone and muscle tissue. J. Appl. Physiol. 21(4), 12311236.
Meunier, A., Katz, J.L., Christel, P. & Sedel, L. (1988). A reflection scanning acoustic microscope for bone and bone-biomaterials interface studies. J. Orthop. Res. 6(5), 770775.
Nicholson, P.H., Cheng, X.G., Lowet, G., Boonen, S., Davie, M.W., Dequeker, J. & Van der Perre, G. (1997). Structural and material mechanical properties of human vertebral cancellous bone. Med. Eng. Phys. 19(8), 729737.
Nicholson, P.H. & Strelitzki, R. (1999). On the prediction of Young's modulus in calcaneal cancellous bone by ultrasonic bulk and bar velocity measurements. Clin. Rheumatol. 18(1), 1016.
Njeh, C.F., Hodgskinson, R., Currey, J.D. & Langton, C.M. (1996). Orthogonal relationships between ultrasonic velocity and material properties of bovine cancellous bone. Med. Eng. Phys. 18(5), 373381.
Nomura, T., Katz, J.L., Powers, M.P. & Saito, C. (2007). A micromechanical elastic property study of trabecular bone in the human mandible. J. Mater. Sci. Mater. Med 18(4), 629633.
Oyen, M.L., Ferguson, V.L., Bembey, A.K., Bushby, A.J. & Boyde, A. (2008). Composite bounds on the elastic modulus of bone. J. Biomech. 41(11), 25852588.
Raum, K. (2003). Multilayer Analysis:Quantitative Scanning Acoustic Microscopy for Tissue Characterization at a Microscopic Scale. IEEE Trans Ultrason Ferroelectr Freq Control 50(5), 507516.
Raum, K., Leguerney, I., Chandelier, F., Talmant, M., Saied, A., Peyrin, F. & Laugier, P. (2006). Site-matched assessment of structural and tissue properties of cortical bone using scanning acoustic microscopy and synchrotron radiation muCT. Phys. Med. Biol. 51(3), 733746.
Raum, K., Reisshauer, J. & Brandt, J. (2004). Frequency and resolution dependence of the anisotropic impedance estimation in cortical bone using time-resolved scanning acoustic microscopy. J Biomed Mater Res A 71(3), 430438.
Rho, J.Y. (1998). Ultrasonic characterisation in determining elastic modulus of trabecular bone material. Med. Biol. Eng. Comput. 36(1), 5759.
Rho, J.Y., Ashman, R.B. & Turner, C.H. (1993). Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J. Biomech. 26(2), 111119.
Rho, J.Y., Kuhn-Spearing, L. & Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92102.
Rho, J.Y. & Pharr, G.M. (1999). Effects of drying on the mechanical properties of bovine femur measured by nanoindentation. J. Mater. Sci. Mater. Med 10(8), 485488.
Rho, J.Y., Tsui, T.Y. & Pharr, G.M. (1997). Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(20), 13251330.
Rodriguez-Florez, N., Oyen, M.L. & Shefelbine, S.J. (2013). Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater 18, 9099.
Roschger, P., Eschberger, J. & Plenk, H. Jr. (1993). Formation of ultracracks in methacrylate-embedded undecalcified bone samples by exposure to aqueous solutions. Cells Mater 4, 361365.
Roschger, P., Fratzl, P., Eschberger, J. & Klaushofer, K. (1998). Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23(4), 319326.
Roschger, P., Manjubala, I., Zoeger, N., Meirer, F., Simon, R., Li, C., Fratzl-Zelman, N., Misof, B.M., Paschalis, E.P., Streli, C., Fratzl, P. & Klaushofer, K. (2010). Bone material quality in transiliac bone biopsies of postmenopausal osteoporotic women after 3 years of strontium ranelate treatment. J. Bone Miner. Res. 25(4), 891900.
Roschger, P., Paschalis, E.P., Fratzl, P. & Klaushofer, K. (2008). Bone mineralization density distribution in health and disease. Bone 42(3), 456466.
Roschger, P., Plenk, H. Jr., Klaushofer, K. & Eschberger, J. (1995). A new scanning electron microscopy approach to the quantification of bone mineral distribution: backscattered electron image grey-levels correlated to calcium K alpha-line intensities. Scanning Microsc 9(1), 7586. discussion 86-78.
Rupin, F., Saied, A., Dalmas, D., Peyrin, F., Haupert, S., Raum, K., Barthel, E., Boivin, G. & Laugier, P. (2009). Assessment of microelastic properties of bone using scanning acoustic microscopy: a face-to-face comparison with nanoindentation. Jpn. J. Appl. Phys. 48, 07GK01.
Saied, A., Raum, K., Leguerney, I. & Laugier, P. (2008). Spatial distribution of anisotropic acoustic impedance assessed by time-resolved 50-MHz scanning acoustic microscopy and its relation to porosity in human cortical bone. Bone 43(1), 187194.
Skedros, J.G., Bloebaum, R.D., Bachus, K.N., Boyce, T.M. & Constantz, B. (1993). Influence of mineral content and composition on graylevels in backscattered electron images of bone. J. Biomed. Mater. Res. 27(1), 5764.
Tai, K., Dao, M., Suresh, S., Palazoglu, A. & Ortiz, C. (2007). Nanoscale heterogeneity promotes energy dissipation in bone. Nat Mater 6(6), 454462.
Takano, Y., Turner, C.H. & Burr, D.B. (1996). Mineral anisotropy in mineralized tissues is similar among species and mineral growth occurs independently of collagen orientation in rats: results from acoustic velocity measurements. J. Bone Miner. Res. 11(9), 12921301.
Tennyson, R.C., Ewert, R. & Niranjan, V. (1972). Dynamic viscoelastic response of bone. Exp Mech 12(11), 502507.
Turner, C.H., Chandran, A. & Pidaparti, R.M. (1995). The anisotropy of osteonal bone and its ultrastructural implications. Bone 17(1), 8589.
Turner, C.H., Takano, Y. & Hirano, T. (1996). Reductions in bone strength after fluoride treatment are not reflected in tissue-level acoustic measurements. Bone 19(6), 603607.
Weber, M., Schoeberl, T., Roschger, P., Klaushofer, K. & Fratzl, P. (2005). Relating local bone stiffness and calcium content by combined nanoindentation and backscattered electron imaging. MRS Proceedings 874, 7984.
Weiss, S., Zimmerman, M.C., Harten, R.D., Alberta, F.G. & Meunier, A. (1998). The acoustic and structural properties of the human femur. J. Biomech. Eng. 120(1), 7176.
Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E. & Goldstein, S.A. (1999). Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32(10), 10051012.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed