Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T17:02:20.474Z Has data issue: false hasContentIssue false

Microscopy and Cathodoluminescence Spectroscopy Characterization of Quartz Exhibiting Different Alkali–Silica Reaction Potential

Published online by Cambridge University Press:  21 January 2016

Aneta Kuchařová*
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha, Czech Republic
Jens Götze
Affiliation:
TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany
Šárka Šachlová
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha, Czech Republic
Zdeněk Pertold
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha, Czech Republic
Richard Přikryl
Affiliation:
Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Praha, Czech Republic
*
*Corresponding author. astastna@gmail.com
Get access

Abstract

Different quartz types from several localities in the Czech Republic and Sweden were examined by polarizing microscopy combined with cathodoluminescence (CL) microscopy, spectroscopy, and petrographic image analysis, and tested by use of an accelerated mortar bar test (following ASTM C1260). The highest alkali–silica reaction potential was indicated by very fine-grained chert, containing significant amounts of fine-grained to cryptocrystalline matrix. The chert exhibited a dark red CL emission band at ~640 nm with a low intensity. Fine-grained orthoquartzites, as well as fine-grained metamorphic vein quartz, separated from phyllite exhibited medium expansion values. The orthoquartzites showed various CL of quartz grains, from blue through violet, red, and brown. Two CL spectral bands at ~450 and ~630 nm, with various intensities, were detected. The quartz from phyllite displayed an inhomogeneous dark red CL with two CL spectral bands of low intensities at ~460 and ~640 nm. The massive coarse-grained pegmatite quartz from pegmatite was assessed to be nonreactive and displayed a typical short-lived blue CL (~480 nm). The higher reactivity of the fine-grained hydrothermal quartz may be connected with high concentrations of defect centers, and probably with amorphized micro-regions in the quartz, respectively; indicated by a yellow CL emission (~570 nm).

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alonso, P.J., Halliburton, L.E., Kohnke, E.E. & Bossoli, R.B. (1983). X-ray induced luminiscence in crystalline SiO2. J Appl Phys 54, 53695375.CrossRefGoogle Scholar
ASTM C1260-07 (2011). Standard test method for potential alkali reactivity of aggregates (Mortar-bar method), ASTM International, West Conshohocken, PA.Google Scholar
Boggs, S. & Krinsley, D. (2006). Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. New York, NY: Cambridge University Press. 165pp.CrossRefGoogle Scholar
Boggs, S., Kwon, Y.-I., Goles, G.G., Rusk, B.G., Krinsley, D. & Seyedolali, A. (2002). Is quartz cathodoluminescence color a reliable provenance tool? A quantitative examination. J Sediment Res 72(3), 408415.CrossRefGoogle Scholar
Broekmans, M.A.T.M. (2004). Structural properties of quartz and their potential role for ASR. Mater Charact 53(2–4), 129140.CrossRefGoogle Scholar
Broekmans, M.A.T.M. (2009). Petrography as an essential complementary method in forensic assessment of concrete deterioration: Two case studies. Mater Charact 60(7), 644654.CrossRefGoogle Scholar
Broekmans, M.A.T.M. & Jansen, J.B.H. (1998). Silica dissolution in impure sandstone: Application to concrete. J Geochem Explor 62(1–3), 311318.CrossRefGoogle Scholar
Castro, N. & Wigum, B.J. (2012). Assessment of the potential alkali-reactivity of aggregates for concrete by image analysis petrography. Cem Concr Res 42(12), 16351644.CrossRefGoogle Scholar
Dreyer, W. (1973). The Science of Rock Mechanics, Part I. The Strength Properties of Rocks, Series on Rock and Soil Mechanics, 2nd ed.Clausthal: Trans Tech Publications.Google Scholar
Fernandes, I. (2009). Composition of alkali–silica reaction products at different locations within concrete structures. Mater Charact 60(7), 655668.CrossRefGoogle Scholar
García del Amo, D. & Calvo Pérez, B. (2001). Diagnosis of the alkali-silica reactivity potential by means of digital image analysis of aggregate thin sections. Cem Concr Res 31(10), 14491454.CrossRefGoogle Scholar
Gillespie, M.R. & Styles, M.T. (1999). BGS rock classification scheme, classification of igneous rocks, vol.1. BGS Report RR 99-06, BGS, Keyworth, Nottingham, UK, 54pp.Google Scholar
Götze, J. (2009 a). Application of Nomarski DIC and cathodoluminescence (CL) microscopy to building materials. Mater Charact 60, 594602.CrossRefGoogle Scholar
Götze, J. (2009 b). Chemistry, textures and physical properties of quartz—Geological interpretation and technical application. Mineral Mag 73(4), 645671.CrossRefGoogle Scholar
Götze, J., Pan, Y., Stevens-Kalceff, M., Kempe, U. & Müller, A. (2015). The origin and significance of the yellow cathodoluminescence (CL) in quartz. Am Mineral 100, 14691482.CrossRefGoogle Scholar
Götze, J., Plötze, M., Fuchs, H. & Habermann, D. (1999). Defect structure and luminiscence behaviour of agate—Results of elektron paramagnetik resonance (EPR) and cathodoluminescence (CL) studies. Mineral Mag 63, 149163.CrossRefGoogle Scholar
Götze, J., Plötze, M. & Habermann, D. (2001). Cathodoluminescence (CL) of quartz: Origin, spectral characteristics and practical applications. Mineral Petrol 71, 225250.Google Scholar
Götze, J., Plötze, M. & Trautmann, T. (2005). Structure and luminiscence characteristics of quartz from pegmatites. Am Mineral 90, 1321.CrossRefGoogle Scholar
Götze, J. & Zimmerle, W. (2000). Quartz and silica as guide to provenance in sediments and sedimentary rocks. Contributions Sediment Geol 21, 191.Google Scholar
Imai, H., Arai, K., Imagawa, H., Hosono, H. & Abe, Y. (1988). Two types of oxygen-deficient centers in synthetic silica glass. Phys Rev B 38, 1277212775.CrossRefGoogle ScholarPubMed
Lambrecht, G. & Diamond, L.W. (2014). Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusions analysis and trace element geothermometry. Geochim Cosmochim Acta 141, 381406.CrossRefGoogle Scholar
Leemann, A. & Merz, C. (2013). An attempt to validate the ultra-accelerated microbar and the concrete performance test with the degree of AAR-induced damage observed in concrete structures. Cem Concr Res 49, 2937.CrossRefGoogle Scholar
Lindgård, J., Nixon, P.J., Borchers, I., Schouenborg, B., Wigum, B.J., Haugen, M. & Åkesson, U. (2010). The EU “PARTNER” Project—European standard tests to prevent alkali reactions in aggregates: Final results and recommendations. Cem Concr Res 40(4), 611635.CrossRefGoogle Scholar
Locati, F., Marfil, S. & Baldo, E. (2010). Effect of ductile deformation of quartz-bearing rocks on the alkali-silica reaction. Eng Geol 116(1–2), 117128.CrossRefGoogle Scholar
Luff, B.J. & Townsend, P.D. (1990). Cathodoluminescence of synthetic quartz. J Phys Condens Matter 2, 80898097.CrossRefGoogle Scholar
Lukschová, Š., Přikryl, R. & Pertold, Z. (2009). Petrographic identification of alkali-silica reactive aggregates in concrete from 20th century bridges. Constr Buil Mater 23(2), 734741.CrossRefGoogle Scholar
Marfunin, A.S. (1979). Spectroscopy, Luminescence and Radiation Centres in Minerals. Berlin, Heidelberg and New York: Springer. 352pp.CrossRefGoogle Scholar
Neuser, R.D., Bruhn, F., Götze, J., Habermann, D. & Richter, D.K. (1995). Kathodolumineszenz: Methodik und Anwendung. Zent Geol Paläontol 1(1/2), 287306.Google Scholar
Pacchioni, G. & Ierano, G. (1997). Computed optical absorption and photoluminescence spectra of neutral oxygen vacancies in α-quartz. Phys Rev Lett 79, 753756.CrossRefGoogle Scholar
Passchier, C.W. & Trouw, R.A.J. (2005). Microtectonics, 2nd ed.Springer-Verlag, Berlin, Heidelberg: Springer Science & Business Media, 371pp.Google Scholar
Petruk, W. (1986). Image analysis: An overview of developments. CANMET Report, 86-4E, 5pp.CrossRefGoogle Scholar
Pettijohn, F.J., Potter, P.E. & Siever, R. (1972). Sand and Sandstone. Berlin: Springer. 618pp.Google Scholar
Přikryl, R. (2001). Some microstructural aspects of strength variation in rocks. Int J Rock Mech Mining Sci Geomech Abstr 38(5), 671682.CrossRefGoogle Scholar
Přikryl, R. (2006). Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitation and possible source of misinterpretations. Eng Geol 87(3–4), 149162.CrossRefGoogle Scholar
Ramseyer, K., Baumann, J., Matter, A. & Mullis, J. (1988). Cathodoluminescence colours of α-quartz. Mineral Mag 52, 669677.CrossRefGoogle Scholar
Ramseyer, K. & Mullis, J. (1990). Factors influencing short-lived blue cathodoluminescence of alpha-quartz. Am Mineral 75, 791800.Google Scholar
RILEM Recommended Test Method AAR-1 (2003). Detection of potential alkali-reactivity of aggregates—petrographic method, TC 191-ARP: Alkali-reactivity and prevention—Assessment, specification and diagnosis of alkali-reactivity, prepared by: Sims, I., Nixon, P. Mater Struct 36(7), 480496.Google Scholar
Rink, W.J., Rendell, H., Marseglia, E.A., Luff, B.J. & Townsend, P.D. (1993). Thermoluminescence spectra of igneous quartz and hydrothermal vein quartz. Phys Chem Miner 20, 353361.CrossRefGoogle Scholar
Robertson, S. (1999). BGS rock classification scheme, classification of metamorphic rocks, vol. 2. BGS Report RR 99-02, BGS, Keyworth, Nottingham, UK, 26pp.Google Scholar
Rønning, T.F., Lindgård, J. & Bremseth, S.K. (2013). ASR assessment—Concrete prism testing within a regulatory framework. Procedia Eng 57, 7076.CrossRefGoogle Scholar
Šachlová, Š., Burdová, A., Pertold, Z. & Přikryl, R. (2011). Macro- and micro-indicators of ASR in concrete pavement. Mag Concr Res 63(8), 553571.CrossRefGoogle Scholar
Šachlová, Š., Kuchařová, A., Pertold, Z. & Přikryl, R. (2015). Microscopic and chemical characterisation of ASR induced by quartz-rich aggregates. In Proceedings of the 15th Euroseminar on Microscopy Applied to Building Materials, Delft, Netherlands, Çopuroğlu, O. (Ed.), pp. 191–198.Google Scholar
Siegel, G.H. & Marrone, M.J. (1981). Photoluminescence in as-drawn and irradiated silica optical fibers: An assessment of the role of nonbridging oxygen defect centers. J Non-Cryst Solids 45, 235247.CrossRefGoogle Scholar
Skuja, L. (1994). Direct singlet-to-triplet optical absorption and luminescence excitation band of the twofold-coordinated silicon center in oxygen-deficient glass. J Non-Cryst Solids 167, 229238.CrossRefGoogle Scholar
Skuja, L. (1998). Optically active oxygen-deficiency related centers in amorphous silicon dioxide. J Non-Cryst Solids 239, 1648.CrossRefGoogle Scholar
SPSS Inc. (2015). SigmaScan® Pro 5.0.0. Available at http://www. sigmaplot.com/index.php (retrieved January 1, 2015).Google Scholar
Stapelbroek, M., Griscom, D.L., Friebele, E.J. & Sigel, G.H. Jr. (1979). Oxygen-associated trapped-hole centers in high-purity fused silicas. J Non-Cryst Solids 32, 313326.CrossRefGoogle Scholar
Šťastná, A., Šachlová, Š., Pertold, Z. & Přikryl, R. (2015). Factors affecting alkali-reactivity of quartz-rich metamorphic rocks: Qualitative versus quantitative microscopy. Eng Geol 187, 19.CrossRefGoogle Scholar
Šťastná, A., Šachlová, Š., Pertold, Z., Přikryl, R. & Leichmann, J. (2012). Cathodoluminescence microscopy and petrographic image analysis of aggregates in concrete pavements affected by alkali-silica reaction. Mater Charact 65, 115125.CrossRefGoogle Scholar
Stevens-Kalceff, M.A. (2009). Cathodoluminescence microcharacterization of point defects in α-quartz. Mineral Mag 73, 585606.CrossRefGoogle Scholar
Stipp, M., Stünitz, H., Heilbronner, R. & Schmid, S.M. (2002). The eastern Tonale fault zone: A “natural laboratory” for crystal plastic deformation of quartz over a temperature range from 250 to 700°C. J Struct Geol 24(12), 18611884.CrossRefGoogle Scholar
Van den Kerkhof, A. M. & Hein, U.F. (2001). Fluid inclusion petrography. Lithos 55, 2747.CrossRefGoogle Scholar
Wenk, H.R., Monteiro, P.J.M. & Shomglin, K. (2008). Relationship between aggregate microstructure and mortar expansion. A case study of deformed granitic rocks from the Santa Rosa mylonite zone. J Mater Sci 43(4), 12781285.CrossRefGoogle Scholar
Wigum, B.J. (1995). Examination of microstructural features of Norwegian cataclastic rocks and their use for predicting alkali-reactivity in concrete. Eng Geol 40(3–4), 195214.CrossRefGoogle Scholar