Skip to main content

Microstructural and Chemical Characterization of Nanostructured TiAlSiN Coatings with Nanoscale Resolution

  • Vanda Godinho (a1) (a2), Teresa C. Rojas (a1), Susana Trasobares (a3), Francisco J. Ferrer (a4), Marie-Paule Delplancke-Ogletree (a2) and Asuncion Fernández (a1)...

Nanoscale resolution electron microscopy analysis combined with ion beam assisted techniques are presented here, to give answers to full characterization of morphology, growth mode, phase formation, and compositional distribution in nanocomposite TiAlSiN coatings deposited under different energetic conditions. Samples were prepared by magnetron sputtering, and the effects of substrate temperature and bias were investigated. The nanocomposite microstructure was demonstrated by the formation of a face-centered cubic (Ti,Al)N phase, obtained by substitution of Al in the cubic titanium nitride (c-TiN) phase, and an amorphous matrix at the column boundary regions mainly composed of Si, N (and O for the samples with higher oxygen contents). Oxygen impurities, predicted as the principal responsible for the degradation of properties, were identified, particularly in nonbiased samples and confirmed to occupy preferentially nitrogen positions at the column boundaries, being mainly associated to silicon forming oxynitride phases. It has been found that the columnar growth mode is not the most adequate to improve mechanical properties. Only the combination of moderate bias and additional substrate heating was able to reduce the oxygen content and eliminate the columnar microstructure leading to the nanocomposite structure with higher hardness (>30 GPa).

Corresponding author
Corresponding author. E-mail:
Hide All
Anders, A. (2010). A structure zone diagram including plasma-based deposition and ion etching. Thin Solid Films 518(15), 40874090.
Barshilia, H.C., Ghosh, M., Shashidhara, , Ramakrishna, R. & Rajam, K.S. (2010). Deposition and characterization of TiAlSiN nanocomposite coatings prepared by reactive pulsed direct current unbalanced magnetron sputtering. Appl Surf Sci 256(21), 64206426.
Carvalho, S., Rebouta, L., Cavaleiro, A., Rocha, L.A., Gomes, J. & Alves, E. (2001). Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings. Thin Solid Films 398399, 391396.
Carvalho, S., Rebouta, L., Ribeiro, E., Vaz, F., Tavares, C.J., Alves, E., Barradas, N.P. & Riviere, J.P. (2009). Structural evolution of Ti-Al-Si-N nanocomposite coatings. Vacuum 83(10), 12061212.
Christiansen, S., Albrecht, M., Strunk, H.P. & Veprek, S. (1998). Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy. J Vac Sci Technol B 16(1), 1922.
Godinho, V., de Haro, M.C.J., Garcia-Lopez, J., Goossens, V., Terryn, H., Delplancke-Ogletree, M.P. & Fernandez, A. (2010a). SiOxNy thin films with variable refraction index: Microstructural, chemical and mechanical properties. Appl Surf Sci 256(14), 45484553.
Godinho, V., Philippon, D., Rojas, T.C., Novikova, N.N., Yakovlev, V.A., Vinogradov, E.A. & Fernandez, A. (2010b). Characterization of Ti1-xAlxN coatings with selective IR reflectivity. Solar Energy 84(8), 13971401.
Hao, S., Delley, B. & Stampfl, C. (2006a). Role of oxygen in TiN(111)/SixNy/TiN(111) interfaces: Implications for superhard nanocrystalline nc-TiN/a-Si3N4 nanocomposites. Phys Rev B 74, 035424.
Hao, S., Delley, B. & Stampfl, C. (2006b). Structure and properties of TiN(111)/SixNy/TiN(111) interfaces in superhard nanocomposites: First-principles investigations. Phys Rev B 74(3), 035402.
Hao, S., Delley, B., Veprek, S. & Stampfl, C. (2006c). Superhard nitride-based nanocomposites: Role of interfaces and effect of impurities. Phys Rev Lett 97(8), 086102.
Hauert, R. & Patscheider, J. (2000). From alloying to nanocomposites—Improved performance of hard coatings. Adv Eng Mater 2(5), 247259.
MacKenzie, M., Weatherly, G.C., McComb, D.W. & Craven, A.J. (2005). Electron energy loss spectroscopy of a TiAlN coating on stainless steel. Scr Mater 53(8), 983987.
Mahieu, S., Ghekiere, P., Depla, D. & De Gryse, R. (2006). Biaxial alignment in sputter deposited thin films. Thin Solid Films 515(4), 12291249.
Mayer, M. (1997). SIMNRA User's Guide. Garching, Germany: Max-Plank-Institut für Plasmaphysik.
Mayrhofer, P.H., Mitterer, C., Hultman, L. & Clemens, H. (2006). Microstructural design of hard coatings. Prog Mater Sci 51(8), 10321114.
Nakonechna, O., Cselle, T., Moretein, M. & Karimi, A. (2004). On the behaviour of indentation fracture in TiAlSiN hard thin films. Thin Solid Films 447448, 447448.
PalDey, S. & Deevi, S.C. (2003). Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater Sci Eng A-Struct 342(1-2), 5879.
Park, I.-W. & Kim, K.H. (2003). Role of amorphous Si3N4 in the microhardness of Ti-Al-Si-N nanocomposite films. J Korean Phys Soc 42(6), 783786.
Perez-Omil, J.A. (1994). Interpretación sistemática de imágenes de microscopía electrónica de alta resolución de materiales policristalinos. Estudio de catalizadores metálicos soportados. In Departamento de Ciencia de Materiales e Ingenieria Metalurgica y Quimica Inorganica. Cadiz, Spain: University of Cadiz.
Philippon, D., Godinho, V., Nagy, P.M., Delplancke-Ogletree, M.P. & Fernandez, A. (2011). Endurance of TiAlSiN coatings: Effect of Si and bias on wear and adhesion. Wear 270(7-8), 541549.
Ribeiro, E., Malczyk, A., Carvalho, S., Rebouta, L., Fernandes, J.V., Alves, E. & Miranda, A.S. (2002). Effects of ion bombardment on properties of d.c. sputtered superhard (Ti,Si, Al)N nanocomposite coatings. Surf Coat Technol 151152, 515520.
Soderberg, H., Oden, M., Larsson, T., Hultman, L. & Molina-Aldareguia, J.M. (2006). Epitaxial stabilization of cubic-SiNx in TiN/SiNx multilayers. Appl Phys Lett 88(19), 191902.
Tanaka, Y., Ichimiya, N., Onishi, Y. & Yamada, Y. (2001). Structure and properties of Al-Ti-Si-N coatings prepared by the cathodic arc ion plating method for high speed cutting applications. Surf Coat Technol 146147, 215221.
Thornton, J.A. (1977). High rate thick film growth. Ann Rev Mater Sci 7, 239260.
Vaz, F., Rebouta, L., Almeida, B., Goudeau, P., Pacaud, J., Riviere, J.P. & Sousa, J.B.E. (1999). Structural analysis of Ti1−xSixNy nanocomposite films prepared by reactive magnetron sputtering. Surf Coat Technol 120, 166172.
Vaz, F., Rebouta, L., Goudeau, P., Pacaud, J., Garem, H., Riviere, J.P., Cavaleiro, A. & Alves, E. (2000). Characterisation of Ti1−xSixNy nanocomposite films. Surf Coat Technol 133, 307313.
Veprek, S. & Jilek, M. (2003). Superhard and functional nanocomposites formed by self-organization in comparison with hardening of coatings by energetic ion bombardment during their deposition. Rev Adv Mater Sci 5, 616.
Veprek, S., Karvankova, P. & Veprek-Heijman, M.G. (2005a). Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites. J Vac Sci Technol B 23(6), 1721.
Veprek, S. & Reiprich, S. (1995). A concept for the design of novel superhard coatings. Thin Solid Films 268, 6471.
Veprek, S., Veprek-Heijman, M.G.J., Karvankova, P. & Prochazka, J. (2005b). Different approaches to superhard coatings and nanocomposites. Thin Solid Films 476(1), 129.
Veprek, S., Zhang, R.F., Veprek-Heijman, M.G.J., Sheng, S.H. & Argon, A.S. (2010). Superhard nanocomposites: Origin of hardness enhancement, properties and applications. Surf Coat Technol 204(12-13), 18981906.
Zhang, R.F. & Veprek, S. (2006). On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti-Si-N system. Mater Sci Eng A 424(1-2), 128137.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed